A remark on the range of elementary operators
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 4, page 1065-1074
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBouali, Said, and Bouhafsi, Youssef. "A remark on the range of elementary operators." Czechoslovak Mathematical Journal 60.4 (2010): 1065-1074. <http://eudml.org/doc/197033>.
@article{Bouali2010,
abstract = {Let $L(H)$ denote the algebra of all bounded linear operators on a separable infinite dimensional complex Hilbert space $H$ into itself. Given $A\in L(H)$, we define the elementary operator $\Delta _A\colon L(H)\longrightarrow L(H)$ by $\Delta _A(X)=AXA-X$. In this paper we study the class of operators $A\in L(H)$ which have the following property: $ATA=T$ implies $AT^\{\ast \}A=T^\{\ast \}$ for all trace class operators $T\in C_1(H)$. Such operators are termed generalized quasi-adjoints. The main result is the equivalence between this character and the fact that the ultraweak closure of the range of $\Delta _A$ is closed under taking adjoints. We give a characterization and some basic results concerning generalized quasi-adjoints operators.},
author = {Bouali, Said, Bouhafsi, Youssef},
journal = {Czechoslovak Mathematical Journal},
keywords = {elementary operators; ultraweak closure; weak closure; quasi-adjoint operator; elementary operator; ultraweak closure; weak closure; generalised quasi-adjoint operator},
language = {eng},
number = {4},
pages = {1065-1074},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A remark on the range of elementary operators},
url = {http://eudml.org/doc/197033},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Bouali, Said
AU - Bouhafsi, Youssef
TI - A remark on the range of elementary operators
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 1065
EP - 1074
AB - Let $L(H)$ denote the algebra of all bounded linear operators on a separable infinite dimensional complex Hilbert space $H$ into itself. Given $A\in L(H)$, we define the elementary operator $\Delta _A\colon L(H)\longrightarrow L(H)$ by $\Delta _A(X)=AXA-X$. In this paper we study the class of operators $A\in L(H)$ which have the following property: $ATA=T$ implies $AT^{\ast }A=T^{\ast }$ for all trace class operators $T\in C_1(H)$. Such operators are termed generalized quasi-adjoints. The main result is the equivalence between this character and the fact that the ultraweak closure of the range of $\Delta _A$ is closed under taking adjoints. We give a characterization and some basic results concerning generalized quasi-adjoints operators.
LA - eng
KW - elementary operators; ultraweak closure; weak closure; quasi-adjoint operator; elementary operator; ultraweak closure; weak closure; generalised quasi-adjoint operator
UR - http://eudml.org/doc/197033
ER -
References
top- Anderson, J. H., Bunce, J. W., Deddens, J. A., Williams, J. P., -algebras and derivation ranges, Acta. Sci. Math. (Szeged) 40 (1978), 211-227. (1978) Zbl0406.46048MR0515202
- Apostol, C., Fialkow, L., 10.4153/CJM-1986-072-6, Canad. J. Math. 38 (1986), 1485-1524. (1986) Zbl0627.47015MR0873420DOI10.4153/CJM-1986-072-6
- Berens, H., Finzel, M., 10.1002/mana.19951750104, Math. Nachr. 175 (1995), 33-46. (1995) Zbl0838.47015MR1355011DOI10.1002/mana.19951750104
- Bouali, S., Bouhafsi, Y., On the range of the elementary operator , Math. Proc. Roy. Irish Acad. 108 (2008), 1-6. (2008) Zbl1189.47033MR2372836
- Dixmier, J., Les -algèbres et leurs représentations, Gauthier Villars, Paris (1964). (1964) Zbl0152.32902MR0171173
- Douglas, R. G., On the operator equation and related topics, Acta. Sci. Math. (Szeged) 30 (1969), 19-32. (1969) Zbl0177.19204MR0250106
- Duggal, B. P., 10.1007/BF01298834, Monatsh. Math. 106 (1988), 139-148. (1988) Zbl0652.47019MR0968331DOI10.1007/BF01298834
- Duggal, B. P., 10.1090/S0002-9939-00-05920-7, Proc. Amer. Math. Soc. 129 (2001), 83-87. (2001) Zbl0958.47015MR1784016DOI10.1090/S0002-9939-00-05920-7
- Embry, M. R., Rosenblum, M., 10.2140/pjm.1974.53.95, Pacific J. Math. 53 (1974), 95-107. (1974) MR0353023DOI10.2140/pjm.1974.53.95
- Fialkow, L., 10.1090/S0002-9947-1981-0621980-8, Trans. Amer. Math. Soc. 267 (1981), 157-174. (1981) Zbl0475.47002MR0621980DOI10.1090/S0002-9947-1981-0621980-8
- Fialkow, A., Lobel, R., 10.1215/ijm/1256045966, Illinois J. Math. 28 (1984), 555-578. (1984) MR0761990DOI10.1215/ijm/1256045966
- Fialkow, L., Elementary operators and applications, (Editor: Matin Mathieu), Procceding of the International Workshop, World Scientific (1992), 55-113. (1992) MR1183937
- Fong, C. K., Sourour, A. R., 10.4153/CJM-1979-080-x, Canad. J. Math. 31 (1979), 845-857. (1979) Zbl0368.47024MR0540912DOI10.4153/CJM-1979-080-x
- Genkai, Z., On the operators and , Chinese J. Fudan Univ. Nat. Sci. 28 (1989), 148-154. (1989)
- Magajna, B., 10.1090/S0002-9939-03-07248-4, Proc. Amer. Math. Soc. 132 (2004), 1747-1754. (2004) Zbl1055.47030MR2051136DOI10.1090/S0002-9939-03-07248-4
- Mathieu, M., Rings of quotients of ultraprime Banach algebras with applications to elementary operators, Proc. Centre Math. Anal., Austral. Nat. Univ. Canberra 21 (1989), 297-317. (1989) Zbl0701.46027MR1022011
- Mathieu, M., 10.1016/S0304-0208(01)80061-X, Recent progress in functional analysis (Valencia 2000) 363-368 North-Holland Math. Stud. 189, North-Holland, Amsterdam (2001). (2001) Zbl1011.47027MR1861772DOI10.1016/S0304-0208(01)80061-X
- Stachò, L. L., Zalar, B., On the norm of Jordan elementary operators in standard operator algebra, Publ. Math. Debrecen 49 (1996), 127-134. (1996) MR1416312
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.