On algebras of generalized Latin squares

František Katrnoška

Mathematica Bohemica (2011)

  • Volume: 136, Issue: 1, page 91-103
  • ISSN: 0862-7959

Abstract

top
The main result of this paper is the introduction of a notion of a generalized R -Latin square, which includes as a special case the standard Latin square, as well as the magic square, and also the double stochastic matrix. Further, the algebra of all generalized Latin squares over a commutative ring with identity is investigated. Moreover, some remarkable examples are added.

How to cite

top

Katrnoška, František. "On algebras of generalized Latin squares." Mathematica Bohemica 136.1 (2011): 91-103. <http://eudml.org/doc/197054>.

@article{Katrnoška2011,
abstract = {The main result of this paper is the introduction of a notion of a generalized $R$-Latin square, which includes as a special case the standard Latin square, as well as the magic square, and also the double stochastic matrix. Further, the algebra of all generalized Latin squares over a commutative ring with identity is investigated. Moreover, some remarkable examples are added.},
author = {Katrnoška, František},
journal = {Mathematica Bohemica},
keywords = {ring with identity; homomorphism; one-sided ideal; two-sided ideal; module; bimodule; ring with identity; homomorphism; one-sided ideal; two-sided ideal; module; bimodule},
language = {eng},
number = {1},
pages = {91-103},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On algebras of generalized Latin squares},
url = {http://eudml.org/doc/197054},
volume = {136},
year = {2011},
}

TY - JOUR
AU - Katrnoška, František
TI - On algebras of generalized Latin squares
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 1
SP - 91
EP - 103
AB - The main result of this paper is the introduction of a notion of a generalized $R$-Latin square, which includes as a special case the standard Latin square, as well as the magic square, and also the double stochastic matrix. Further, the algebra of all generalized Latin squares over a commutative ring with identity is investigated. Moreover, some remarkable examples are added.
LA - eng
KW - ring with identity; homomorphism; one-sided ideal; two-sided ideal; module; bimodule; ring with identity; homomorphism; one-sided ideal; two-sided ideal; module; bimodule
UR - http://eudml.org/doc/197054
ER -

References

top
  1. Andrew, W. S., Magic Squares and Cubes, Dover, New York (1960). (1960) MR0114763
  2. Birkhoff, G., Tres observaciones sobre el algebra lineal, Rev., Ser. A, Univ. Nac. Tucuman 5 (1946), 147-150. (1946) MR0020547
  3. Cayley, A., On the theory of groups, Proc. London Math. Soc. 9 (1877/78), 126-133. (1877) 
  4. Davis, P., Circulant Matrices, London (1970). (1970) 
  5. Dènes, J., Keedwell, A. D., Latin Squares and Their Applications, Akadémiai Kiadó, Budapest, (1974). (1974) MR0351850
  6. Euler, L., Recherches sur une nouvelle espace de carrés magiques, Verh. Zeeuwsch. Genootsch. Wetensch. Vlissengen 9 (1782), 85-239. (1782) 
  7. Fano, G., Sui postulati fundamentali della geometria proiectiva, Giorn. Math. 30 (1892), 106-112. (1892) 
  8. Fisher, R. A., The Design of Experiments, Olivier et Boyd, Edinburgh (1937). (1937) 
  9. Hall, jun., M., Combinatorial Theory, Blaisdell Publ. Comp., Toronto (1967). (1967) Zbl0196.02401
  10. Herstein, I. N., Rings with Involutions, Univ. of Chicago Press (1976). (1976) MR0442017
  11. Hungerford, T. V., Algebra, Springer, New York (1980). (1980) Zbl0442.00002MR0600654
  12. Kárteszi, F., Introduction to Finite Geometries, Akademiai Kiadò, Budapest (1976). (1976) MR0423175
  13. Kasch, F., Moduln und Ringe, Teubner, Stuttgart (1977). (1977) Zbl0343.16001MR0429963
  14. Katrnoška, F., Logics that are generated by idempotents, Lobachevskij J. Math. 15 (2004), 11-19. (2004) Zbl1060.15018MR2120697
  15. Katrnoška, F., Latin squares and the genetic code, Pokroky Mat. Fyz. Astronom. 52 (2007), 177-187 Czech. (2007) Zbl1265.05078
  16. Kostrikin, A. I., Shafarewich, I. R., Algebra I, Springer, Berlin (1990). (1990) 
  17. Marcus, M., 10.2307/2309679, Amer. Math. Monthly 67 (1960), 215-221. (1960) Zbl0092.01601MR0118732DOI10.2307/2309679
  18. Marcus, M., Minc, H., A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston (1964). (1964) Zbl0126.02404MR0162808
  19. Moufang, R., 10.1007/BF01448037, Math. Ann. 110 (1935), 416-430. (1935) MR1512948DOI10.1007/BF01448037
  20. Schafer, R. D., 10.2307/2372100, J. Amer. Math. 71 (1949), 121-135. (1949) Zbl0034.02004MR0027751DOI10.2307/2372100
  21. Singer, J., 10.1090/S0002-9947-1938-1501951-4, Trans. Amer. Math. Soc. 43 (1938), 377-385. (1938) Zbl0019.00502MR1501951DOI10.1090/S0002-9947-1938-1501951-4
  22. Singer, J., 10.2307/2309683, Amer. Math. Monthly 67 (1960), 235-240. (1960) Zbl0096.01202MR0124227DOI10.2307/2309683
  23. Steinfeld, O., 10.1007/BF02063296, Acta Math. Acad. Scient. Hung. 10 (1959), 149-155. (1959) Zbl0087.02801MR0108523DOI10.1007/BF02063296
  24. Wiegandt, R., Über die Struktursätze der Halbringe, Ann. Univ. Sci. Budap. Rolando Eötvös, Sec. Math. 5 (1962), 51-68. (1962) Zbl0123.00901MR0148712
  25. Wörz-Busekros, A., Algebras in Genetics, Springer, Berlin, Heidelberg, New York (1980). (1980) MR0599179

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.