Homogenization of quadratic complementary energies: a duality example
Mathematica Bohemica (2011)
- Volume: 136, Issue: 2, page 165-173
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSerrano, Hélia. "Homogenization of quadratic complementary energies: a duality example." Mathematica Bohemica 136.2 (2011): 165-173. <http://eudml.org/doc/197065>.
@article{Serrano2011,
abstract = {We study an example in two dimensions of a sequence of quadratic functionals whose limit energy density, in the sense of $\Gamma $-convergence, may be characterized as the dual function of the limit energy density of the sequence of their dual functionals. In this special case, $\Gamma $-convergence is indeed stable under the dual operator. If we perturb such quadratic functionals with linear terms this statement is no longer true.},
author = {Serrano, Hélia},
journal = {Mathematica Bohemica},
keywords = {$\Gamma $-convergence; oscillatory behaviour; Young measure; conjugate functional; -convergence; oscillatory behavior; Young measure; conjugate functional},
language = {eng},
number = {2},
pages = {165-173},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Homogenization of quadratic complementary energies: a duality example},
url = {http://eudml.org/doc/197065},
volume = {136},
year = {2011},
}
TY - JOUR
AU - Serrano, Hélia
TI - Homogenization of quadratic complementary energies: a duality example
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 2
SP - 165
EP - 173
AB - We study an example in two dimensions of a sequence of quadratic functionals whose limit energy density, in the sense of $\Gamma $-convergence, may be characterized as the dual function of the limit energy density of the sequence of their dual functionals. In this special case, $\Gamma $-convergence is indeed stable under the dual operator. If we perturb such quadratic functionals with linear terms this statement is no longer true.
LA - eng
KW - $\Gamma $-convergence; oscillatory behaviour; Young measure; conjugate functional; -convergence; oscillatory behavior; Young measure; conjugate functional
UR - http://eudml.org/doc/197065
ER -
References
top- Ball, J., 10.1007/BFb0024945, Lectures Notes in Physics 344. Springer, Berlin (1989). (1989) MR1036070DOI10.1007/BFb0024945
- Braides, A., -convergence for Beginners, Oxford University Press, Oxford (2002). (2002) Zbl1198.49001MR1968440
- Braides, A., Defranceschi, A., Homogenization of Multiple Integrals, Oxford University Press (1998). (1998) Zbl0911.49010MR1684713
- Cioranescu, D., Donato, P., An Introduction to Homogenization, Oxford University Press, Oxford (1999). (1999) Zbl0939.35001MR1765047
- Maso, G. Dal, An Introduction to -Convergence, Birkhäuser, Basel (1993). (1993) MR1201152
- Giorgi, E. De, Franzoni, T., Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei VIII. Ser, Rend. Cl. Sci. Mat. 58 (1975), Italien 842-850. (1975) Zbl0339.49005MR0448194
- Girault, V., Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations, Springer, Berlin (1986). (1986) Zbl0585.65077MR0851383
- Jikov, V. V., Kozlov, S. M., Oleinik, O. A., Homogenization of Differential Operators and Integral Functionals, Springer, Berlin (1994). (1994) MR1329546
- Pedregal, P., Parametrized Measures and Variational Principles, Birkäuser, Basel (1997). (1997) Zbl0879.49017MR1452107
- Pedregal, P., 10.1137/S0036141003425696, SIAM J. Math. Anal. 36 (2004), 423-440. (2004) Zbl1077.49012MR2111784DOI10.1137/S0036141003425696
- Pedregal, P., Serrano, H., 10.1016/j.na.2008.09.007, Nonlinear Anal., Theory Methods Appl. 70 (2009), 4178-4189. (2009) MR2514750DOI10.1016/j.na.2008.09.007
- Serrano, H., 10.1016/j.jmaa.2009.05.056, J. Math. Anal. Appl. 359 (2009), 311-321. (2009) Zbl1167.49016MR2542177DOI10.1016/j.jmaa.2009.05.056
- Young, L. C., Lectures on the Calculus of Variations and Optimal Control Theory, Launders Company, Philadelphia (1980). (1980)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.