Overview of Recent Results in Growth-curve-type Multivariate Linear Models
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2011)
- Volume: 50, Issue: 2, page 137-146
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topŽežula, Ivan, and Klein, Daniel. "Overview of Recent Results in Growth-curve-type Multivariate Linear Models." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 50.2 (2011): 137-146. <http://eudml.org/doc/197068>.
@article{Žežula2011,
abstract = {The Extended Growth Curve Model (ECGM) is a multivariate linear model connecting different multivariate regression models in sample subgroups through common variance matrix. It has the form: \[ Y=\sum ^\{k\}\_\{i=1\}X\_iB\_iZ\_i^\{\prime \}+e, \quad \operatorname\{vec\}(e)\sim N\_\{n\times p\}\left(0,\Sigma \otimes I\_n\right). \]
Here, matrices $X_i$ contain subgroup division indicators, and $Z_i$ corresponding regressors. If $k=1$, we speak about (ordinary) Growth Curve Model. The model has already its age (it dates back to 1964), but it has many important applications. That is why it is still intensively studied. Many articles investigating different aspects or special cases of the model appeared in recent years. We will try to summarize the progress done so far.},
author = {Žežula, Ivan, Klein, Daniel},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {growth curve model; extended growth curve model; multivariate linear model; extended growth curve model; multivariate linear models},
language = {eng},
number = {2},
pages = {137-146},
publisher = {Palacký University Olomouc},
title = {Overview of Recent Results in Growth-curve-type Multivariate Linear Models},
url = {http://eudml.org/doc/197068},
volume = {50},
year = {2011},
}
TY - JOUR
AU - Žežula, Ivan
AU - Klein, Daniel
TI - Overview of Recent Results in Growth-curve-type Multivariate Linear Models
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2011
PB - Palacký University Olomouc
VL - 50
IS - 2
SP - 137
EP - 146
AB - The Extended Growth Curve Model (ECGM) is a multivariate linear model connecting different multivariate regression models in sample subgroups through common variance matrix. It has the form: \[ Y=\sum ^{k}_{i=1}X_iB_iZ_i^{\prime }+e, \quad \operatorname{vec}(e)\sim N_{n\times p}\left(0,\Sigma \otimes I_n\right). \]
Here, matrices $X_i$ contain subgroup division indicators, and $Z_i$ corresponding regressors. If $k=1$, we speak about (ordinary) Growth Curve Model. The model has already its age (it dates back to 1964), but it has many important applications. That is why it is still intensively studied. Many articles investigating different aspects or special cases of the model appeared in recent years. We will try to summarize the progress done so far.
LA - eng
KW - growth curve model; extended growth curve model; multivariate linear model; extended growth curve model; multivariate linear models
UR - http://eudml.org/doc/197068
ER -
References
top- Åsenblad, N., Rosen, D. von, 10.1016/j.jspi.2004.06.061, Journal of Statistical Planning and Inference 136 (2006), 475–497. (2006) MR2211351DOI10.1016/j.jspi.2004.06.061
- Bhattacharya, S., Basu, A., Bandyopadhyay, S., Goodness-of-fit testing for exponential polynomial growth curves, Communications in Statistics – Theory and Methods 38 (2009), 340–363. (2009) Zbl1159.62011MR2510788
- Bochniak, A., Wesołowska-Janczarek, M., On influence of variability in concomitant variables values on estimation of polynomial coefficients in growth curves models with concomitant variables changing in time and the same values for all experimental units, Colloquium Biometricum 40 (2010), 135–145. (2010)
- Fang, K. T., Wang, S. G., Rosen, D. von, 10.1016/j.jmva.2005.03.016, Journal of Multivariate Analysis 97 (2006), 619–632. (2006) MR2236493DOI10.1016/j.jmva.2005.03.016
- Fujikoshi, Y., Rosen, D. von, 10.1006/jmva.2000.1907, Journal of Multivariate Analysis 75 (2000), 245–268. (2000) MR1802550DOI10.1006/jmva.2000.1907
- Hamid, J. S., Beyene, J., Rosen, D. von, 10.1016/j.jmva.2010.09.001, Journal of Multivariate Analysis 102 (2011), 238–251. (2011) MR2739112DOI10.1016/j.jmva.2010.09.001
- Heinen, M., Analytical growth equations and their Genstat 5 equivalents, Netherlands Journal of Agricultural Science 47 (1999), 67–89. (1999)
- Hu, J., 10.1080/02331880903236884, Statistics 44, 5 (2009), 477–492. (2009) MR2739406DOI10.1080/02331880903236884
- Hu, J., Yan, G., 10.3150/08-BEJ128, Bernoulli 14, 3 (2008), 623–636. (2008) Zbl1155.62014MR2537805DOI10.3150/08-BEJ128
- Kanda, T., Ohtaki, M., Fujikoshi, Y., 10.1081/STA-120013015, Communications in Statistics – Theory and Methods 31, 9 (2002), 1605–1616. (2002) Zbl1009.62043MR1925084DOI10.1081/STA-120013015
- Klein, D., Žežula, I., On uniform correlation structure, In: Mathematical Methods In Economics And Industry, conference proceedings, Herl’any, Slovakia (2007), 94–100. (2007)
- Klein, D., Žežula, I., 10.1016/j.jspi.2009.03.011, Journal of Statistical Planning and Inference 139 (2009), 3270–3276. (2009) MR2535199DOI10.1016/j.jspi.2009.03.011
- Kollo, T., Roos, A., Rosen, D. von, 10.1111/j.1467-9469.2006.00546.x, Scandinavian Journal of Statistics 34 (2007), 499–510. (2007) MR2368795DOI10.1111/j.1467-9469.2006.00546.x
- Kollo, T., Rosen, D. von, Advanced multivariate statistics with matrices, Springer, Dordrecht, 2005. (2005) MR2162145
- Kollo, T., Rosen, D. von, 10.1080/02331880108802722, Statistics 35, 1 (2000), 1–22. (2000) MR1820821DOI10.1080/02331880108802722
- Kubáček, L., Multivariate models with constraints confidence regions, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 47 (2008), 83–100. (2008) Zbl1165.62043MR2482719
- Lin, S. H., Lee, J. C., 10.1016/S0047-259X(02)00060-X, Journal of Multivariate Analysis 84 (2003), 351–368. (2003) Zbl1014.62067MR1965227DOI10.1016/S0047-259X(02)00060-X
- Mentz, G. B., Kshirsagar, A. M., 10.1081/STA-120022246, Communications in Statistics – Theory and Methods 32, 8 (2003), 1591–1605. (2003) Zbl1184.62090MR1996796DOI10.1081/STA-120022246
- Nummi, T., 10.1080/02664760021763, Journal of Applied Statistics 27, 2 (2000), 235–243. (2000) Zbl0941.62066MR1743460DOI10.1080/02664760021763
- Nummi, T., Koskela, L., 10.1080/02664760801923964, Journal of Applied Statistics 35, 6 (2008), 681–691. (2008) Zbl1147.62051MR2516865DOI10.1080/02664760801923964
- Nummi, T., Möttönen, J., 10.1007/s001840000063, Metrika 52 (2000), 77–89. (2000) MR1791926DOI10.1007/s001840000063
- Ohlson, M., Andrushchenko, Z., Rosen, D. von, 10.1007/s10463-008-0213-1, Annals of the Institute of Statistical Mathematics 63 (2011), 29–42. (2011) MR2748932DOI10.1007/s10463-008-0213-1
- Ohlson, M., Rosen, D. von, 10.1016/j.jmva.2009.12.023, Journal of Multivariate Analysis 101 (2010), 1284–1295. (2010) MR2595308DOI10.1016/j.jmva.2009.12.023
- Pihlak, M., 10.2478/s12175-008-0099-7, Mathematica Slovaca 58, 5 (2008), 635–652. (2008) Zbl1195.62008MR2434683DOI10.2478/s12175-008-0099-7
- Potthoff, R. F., Roy, S. N., A generalized multivariate analysis of variance model useful especially for growth curve problems, Biometrika 51, 3-4 (1964), 313–326. (1964) Zbl0138.14306MR0181062
- Rao Chaganty, N., 10.1016/S0378-3758(02)00362-2, Journal of Statistical Planning and Inference 117 (2003), 123–139. (2003) MR2001145DOI10.1016/S0378-3758(02)00362-2
- Rao Chaganty, N., 10.1016/S0378-3758(96)00203-0, Journal of Statistical Planning and Inference 63 (1997), 39–54. (1997) MR1474184DOI10.1016/S0378-3758(96)00203-0
- Reinsel, G. C., Velu, R. P., 10.1016/S0378-3758(02)00466-4, Journal of Statistical Planning and Inference 114 (2003), 107–129. (2003) Zbl1011.62056MR1980874DOI10.1016/S0378-3758(02)00466-4
- Roy, A., Khattree, R., 10.1016/j.stamet.2005.07.003, Statistical Methodology 2 (2005), 297–306. (2005) Zbl1248.62092MR2205602DOI10.1016/j.stamet.2005.07.003
- Rusnačko, R., The comparison of two estimators of variance parameters in a special growth curve model, Forum Statisticum Slovacum 6, 5 (2010), 204–209. (2010)
- Satoh, K., Ohtaki, M., 10.1080/03610920500498790, Communications in Statistics – Theory and Methods 35, 4 (2006), 641–648. (2006) Zbl1093.62046MR2256245DOI10.1080/03610920500498790
- Srivastava, M., Nested Growth Curve Models, Sankhyā A 64, 2 (2002), 379–408. (2002) Zbl1192.62156MR1981765
- Srivastava, M., Rosen, T. von, Rosen, D. von, 10.3103/S1066530708040066, Mathematical Methods of Statistics 17, 4 (2008), 357–370. (2008) MR2483463DOI10.3103/S1066530708040066
- Srivastava, M., Rosen, D. von, Regression models with unknown singular covariance matrix, Linear Algebra and its Applications 354 (2002), 255–273. (2002) MR1927661
- Vasdekis, V. G. S., A comparison of REML and covariance adjustment method in the estimation of growth curve models, Communications in Statistics — Theory and Methods 37, 20 (2008), 3287–3297. (2008) MR2467767
- Wawrzosek, J., Wesołowska-Janczarek, M., Testability and estimability in multivariate linear normal model with various restrictions, Communications in Statistics – Theory and Methods 38 (2009), 828–841. (2009) MR2522531
- Wesołowska-Janczarek, M., Selected models and methods of parameter estimation in growth curves with concomitant variables, Colloquium Biometricum 39 (2009), 21–31. (2009)
- Wesołowska-Janczarek, M., Kolczyńska, E., Comparison of two estimation methods in growth curve model with concomitant variables, Colloquium Biometricum 38 (2008), 135–149. (2008)
- Wong, C. S., Cheng, H., 10.1016/S0378-3758(00)00220-2, Journal of Statistical Planning and Inference 97 (2001), 323–342. (2001) Zbl1015.62056MR1861157DOI10.1016/S0378-3758(00)00220-2
- Wu, Q. G., 10.1016/S0378-3758(97)00119-5, Journal of Statistical Planning and Inference 69 (1998), 101–114. (1998) Zbl0924.62057MR1631157DOI10.1016/S0378-3758(97)00119-5
- Wu, Q. G., 10.1016/S0378-3758(00)00084-7, Journal of Statistical Planning and Inference 88 (2000), 285–300. (2000) Zbl0951.62045MR1792046DOI10.1016/S0378-3758(00)00084-7
- Wu, X. Y., Liang, H., Zou, G. H., Unbiased invariant least squares estimation in a generalized growth curve model, Sankhyā A 71, 1 (2009), 73–93. (2009) Zbl1193.62100MR2579649
- Wu, H., Zhang J. T., Local polynomial mixed-effects models for longitudinal data, Journal of the American Statistical Association 97, 459 (2002), 883–897. (2002) Zbl1048.62048MR1941417
- Wu, X. Y., Zou, G. H., Chen, J. W., 10.1016/j.jmva.2006.05.007, Journal of Multivariate Analysis 97 (2006), 1718–1741. (2006) Zbl1112.62054MR2298885DOI10.1016/j.jmva.2006.05.007
- Wu, X. Y., Zou, G. H., Li, Y. F., 10.1016/j.jmva.2008.10.007, Journal of Multivariate Analysis 100 (2009), 1061–1072. (2009) Zbl1157.62035MR2498732DOI10.1016/j.jmva.2008.10.007
- Xu, L., Stoica, P., Li, J., 10.1109/TSP.2006.879296, IEEE Transactions on Signal Processing 54, 9 (2006), 3363–3371. (2006) DOI10.1109/TSP.2006.879296
- Xu, L., Stoica, P., Li, J., 10.1016/j.dsp.2006.05.005, Digital Signal Processing 16 (2006), 902–912. (2006) DOI10.1016/j.dsp.2006.05.005
- Yang, G. Q., Wu, Q. G., 10.1016/S0047-259X(03)00058-7, Journal of Multivariate Analysis 88 (2004), 76–88. (2004) Zbl1032.62063MR2021861DOI10.1016/S0047-259X(03)00058-7
- Ye, R. D., Wang, S. G., 10.1016/j.jspi.2008.12.012, Journal of Statistical Planning and Inference 139 (2009), 2746–2756. (2009) Zbl1162.62055MR2523663DOI10.1016/j.jspi.2008.12.012
- Yokoyama, T., Estimation in a random effects model with parallel polynomial growth curves, Hiroshima Mathematical Journal 31 (2001), 425–433. (2001) Zbl0989.62034MR1870985
- Žežula, I., 10.1016/j.jmva.2005.10.001, Journal of Multivariate Analysis 97 (2006), 606–618. (2006) Zbl1101.62042MR2236492DOI10.1016/j.jmva.2005.10.001
- Žežula, I., Klein, D., Orthogonal decompositions in growth curve models, Acta et Commentationes Universitatis Tartuensis de Mathematica 14 (2010), 35–44. (2010) Zbl1228.62065MR2816617
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.