Overview of Recent Results in Growth-curve-type Multivariate Linear Models

Ivan Žežula; Daniel Klein

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2011)

  • Volume: 50, Issue: 2, page 137-146
  • ISSN: 0231-9721

Abstract

top
The Extended Growth Curve Model (ECGM) is a multivariate linear model connecting different multivariate regression models in sample subgroups through common variance matrix. It has the form: Y = i = 1 k X i B i Z i ' + e , vec ( e ) N n × p 0 , Σ I n . Here, matrices X i contain subgroup division indicators, and Z i corresponding regressors. If k = 1 , we speak about (ordinary) Growth Curve Model. The model has already its age (it dates back to 1964), but it has many important applications. That is why it is still intensively studied. Many articles investigating different aspects or special cases of the model appeared in recent years. We will try to summarize the progress done so far.

How to cite

top

Žežula, Ivan, and Klein, Daniel. "Overview of Recent Results in Growth-curve-type Multivariate Linear Models." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 50.2 (2011): 137-146. <http://eudml.org/doc/197068>.

@article{Žežula2011,
abstract = {The Extended Growth Curve Model (ECGM) is a multivariate linear model connecting different multivariate regression models in sample subgroups through common variance matrix. It has the form: \[ Y=\sum ^\{k\}\_\{i=1\}X\_iB\_iZ\_i^\{\prime \}+e, \quad \operatorname\{vec\}(e)\sim N\_\{n\times p\}\left(0,\Sigma \otimes I\_n\right). \] Here, matrices $X_i$ contain subgroup division indicators, and $Z_i$ corresponding regressors. If $k=1$, we speak about (ordinary) Growth Curve Model. The model has already its age (it dates back to 1964), but it has many important applications. That is why it is still intensively studied. Many articles investigating different aspects or special cases of the model appeared in recent years. We will try to summarize the progress done so far.},
author = {Žežula, Ivan, Klein, Daniel},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {growth curve model; extended growth curve model; multivariate linear model; extended growth curve model; multivariate linear models},
language = {eng},
number = {2},
pages = {137-146},
publisher = {Palacký University Olomouc},
title = {Overview of Recent Results in Growth-curve-type Multivariate Linear Models},
url = {http://eudml.org/doc/197068},
volume = {50},
year = {2011},
}

TY - JOUR
AU - Žežula, Ivan
AU - Klein, Daniel
TI - Overview of Recent Results in Growth-curve-type Multivariate Linear Models
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2011
PB - Palacký University Olomouc
VL - 50
IS - 2
SP - 137
EP - 146
AB - The Extended Growth Curve Model (ECGM) is a multivariate linear model connecting different multivariate regression models in sample subgroups through common variance matrix. It has the form: \[ Y=\sum ^{k}_{i=1}X_iB_iZ_i^{\prime }+e, \quad \operatorname{vec}(e)\sim N_{n\times p}\left(0,\Sigma \otimes I_n\right). \] Here, matrices $X_i$ contain subgroup division indicators, and $Z_i$ corresponding regressors. If $k=1$, we speak about (ordinary) Growth Curve Model. The model has already its age (it dates back to 1964), but it has many important applications. That is why it is still intensively studied. Many articles investigating different aspects or special cases of the model appeared in recent years. We will try to summarize the progress done so far.
LA - eng
KW - growth curve model; extended growth curve model; multivariate linear model; extended growth curve model; multivariate linear models
UR - http://eudml.org/doc/197068
ER -

References

top
  1. Åsenblad, N., Rosen, D. von, 10.1016/j.jspi.2004.06.061, Journal of Statistical Planning and Inference 136 (2006), 475–497. (2006) MR2211351DOI10.1016/j.jspi.2004.06.061
  2. Bhattacharya, S., Basu, A., Bandyopadhyay, S., Goodness-of-fit testing for exponential polynomial growth curves, Communications in Statistics – Theory and Methods 38 (2009), 340–363. (2009) Zbl1159.62011MR2510788
  3. Bochniak, A., Wesołowska-Janczarek, M., On influence of variability in concomitant variables values on estimation of polynomial coefficients in growth curves models with concomitant variables changing in time and the same values for all experimental units, Colloquium Biometricum 40 (2010), 135–145. (2010) 
  4. Fang, K. T., Wang, S. G., Rosen, D. von, 10.1016/j.jmva.2005.03.016, Journal of Multivariate Analysis 97 (2006), 619–632. (2006) MR2236493DOI10.1016/j.jmva.2005.03.016
  5. Fujikoshi, Y., Rosen, D. von, 10.1006/jmva.2000.1907, Journal of Multivariate Analysis 75 (2000), 245–268. (2000) MR1802550DOI10.1006/jmva.2000.1907
  6. Hamid, J. S., Beyene, J., Rosen, D. von, 10.1016/j.jmva.2010.09.001, Journal of Multivariate Analysis 102 (2011), 238–251. (2011) MR2739112DOI10.1016/j.jmva.2010.09.001
  7. Heinen, M., Analytical growth equations and their Genstat 5 equivalents, Netherlands Journal of Agricultural Science 47 (1999), 67–89. (1999) 
  8. Hu, J., 10.1080/02331880903236884, Statistics 44, 5 (2009), 477–492. (2009) MR2739406DOI10.1080/02331880903236884
  9. Hu, J., Yan, G., 10.3150/08-BEJ128, Bernoulli 14, 3 (2008), 623–636. (2008) Zbl1155.62014MR2537805DOI10.3150/08-BEJ128
  10. Kanda, T., Ohtaki, M., Fujikoshi, Y., 10.1081/STA-120013015, Communications in Statistics – Theory and Methods 31, 9 (2002), 1605–1616. (2002) Zbl1009.62043MR1925084DOI10.1081/STA-120013015
  11. Klein, D., Žežula, I., On uniform correlation structure, In: Mathematical Methods In Economics And Industry, conference proceedings, Herl’any, Slovakia (2007), 94–100. (2007) 
  12. Klein, D., Žežula, I., 10.1016/j.jspi.2009.03.011, Journal of Statistical Planning and Inference 139 (2009), 3270–3276. (2009) MR2535199DOI10.1016/j.jspi.2009.03.011
  13. Kollo, T., Roos, A., Rosen, D. von, 10.1111/j.1467-9469.2006.00546.x, Scandinavian Journal of Statistics 34 (2007), 499–510. (2007) MR2368795DOI10.1111/j.1467-9469.2006.00546.x
  14. Kollo, T., Rosen, D. von, Advanced multivariate statistics with matrices, Springer, Dordrecht, 2005. (2005) MR2162145
  15. Kollo, T., Rosen, D. von, 10.1080/02331880108802722, Statistics 35, 1 (2000), 1–22. (2000) MR1820821DOI10.1080/02331880108802722
  16. Kubáček, L., Multivariate models with constraints confidence regions, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 47 (2008), 83–100. (2008) Zbl1165.62043MR2482719
  17. Lin, S. H., Lee, J. C., 10.1016/S0047-259X(02)00060-X, Journal of Multivariate Analysis 84 (2003), 351–368. (2003) Zbl1014.62067MR1965227DOI10.1016/S0047-259X(02)00060-X
  18. Mentz, G. B., Kshirsagar, A. M., 10.1081/STA-120022246, Communications in Statistics – Theory and Methods 32, 8 (2003), 1591–1605. (2003) Zbl1184.62090MR1996796DOI10.1081/STA-120022246
  19. Nummi, T., 10.1080/02664760021763, Journal of Applied Statistics 27, 2 (2000), 235–243. (2000) Zbl0941.62066MR1743460DOI10.1080/02664760021763
  20. Nummi, T., Koskela, L., 10.1080/02664760801923964, Journal of Applied Statistics 35, 6 (2008), 681–691. (2008) Zbl1147.62051MR2516865DOI10.1080/02664760801923964
  21. Nummi, T., Möttönen, J., 10.1007/s001840000063, Metrika 52 (2000), 77–89. (2000) MR1791926DOI10.1007/s001840000063
  22. Ohlson, M., Andrushchenko, Z., Rosen, D. von, 10.1007/s10463-008-0213-1, Annals of the Institute of Statistical Mathematics 63 (2011), 29–42. (2011) MR2748932DOI10.1007/s10463-008-0213-1
  23. Ohlson, M., Rosen, D. von, 10.1016/j.jmva.2009.12.023, Journal of Multivariate Analysis 101 (2010), 1284–1295. (2010) MR2595308DOI10.1016/j.jmva.2009.12.023
  24. Pihlak, M., 10.2478/s12175-008-0099-7, Mathematica Slovaca 58, 5 (2008), 635–652. (2008) Zbl1195.62008MR2434683DOI10.2478/s12175-008-0099-7
  25. Potthoff, R. F., Roy, S. N., A generalized multivariate analysis of variance model useful especially for growth curve problems, Biometrika 51, 3-4 (1964), 313–326. (1964) Zbl0138.14306MR0181062
  26. Rao Chaganty, N., 10.1016/S0378-3758(02)00362-2, Journal of Statistical Planning and Inference 117 (2003), 123–139. (2003) MR2001145DOI10.1016/S0378-3758(02)00362-2
  27. Rao Chaganty, N., 10.1016/S0378-3758(96)00203-0, Journal of Statistical Planning and Inference 63 (1997), 39–54. (1997) MR1474184DOI10.1016/S0378-3758(96)00203-0
  28. Reinsel, G. C., Velu, R. P., 10.1016/S0378-3758(02)00466-4, Journal of Statistical Planning and Inference 114 (2003), 107–129. (2003) Zbl1011.62056MR1980874DOI10.1016/S0378-3758(02)00466-4
  29. Roy, A., Khattree, R., 10.1016/j.stamet.2005.07.003, Statistical Methodology 2 (2005), 297–306. (2005) Zbl1248.62092MR2205602DOI10.1016/j.stamet.2005.07.003
  30. Rusnačko, R., The comparison of two estimators of variance parameters in a special growth curve model, Forum Statisticum Slovacum 6, 5 (2010), 204–209. (2010) 
  31. Satoh, K., Ohtaki, M., 10.1080/03610920500498790, Communications in Statistics – Theory and Methods 35, 4 (2006), 641–648. (2006) Zbl1093.62046MR2256245DOI10.1080/03610920500498790
  32. Srivastava, M., Nested Growth Curve Models, Sankhyā A 64, 2 (2002), 379–408. (2002) Zbl1192.62156MR1981765
  33. Srivastava, M., Rosen, T. von, Rosen, D. von, 10.3103/S1066530708040066, Mathematical Methods of Statistics 17, 4 (2008), 357–370. (2008) MR2483463DOI10.3103/S1066530708040066
  34. Srivastava, M., Rosen, D. von, Regression models with unknown singular covariance matrix, Linear Algebra and its Applications 354 (2002), 255–273. (2002) MR1927661
  35. Vasdekis, V. G. S., A comparison of REML and covariance adjustment method in the estimation of growth curve models, Communications in Statistics — Theory and Methods 37, 20 (2008), 3287–3297. (2008) MR2467767
  36. Wawrzosek, J., Wesołowska-Janczarek, M., Testability and estimability in multivariate linear normal model with various restrictions, Communications in Statistics – Theory and Methods 38 (2009), 828–841. (2009) MR2522531
  37. Wesołowska-Janczarek, M., Selected models and methods of parameter estimation in growth curves with concomitant variables, Colloquium Biometricum 39 (2009), 21–31. (2009) 
  38. Wesołowska-Janczarek, M., Kolczyńska, E., Comparison of two estimation methods in growth curve model with concomitant variables, Colloquium Biometricum 38 (2008), 135–149. (2008) 
  39. Wong, C. S., Cheng, H., 10.1016/S0378-3758(00)00220-2, Journal of Statistical Planning and Inference 97 (2001), 323–342. (2001) Zbl1015.62056MR1861157DOI10.1016/S0378-3758(00)00220-2
  40. Wu, Q. G., 10.1016/S0378-3758(97)00119-5, Journal of Statistical Planning and Inference 69 (1998), 101–114. (1998) Zbl0924.62057MR1631157DOI10.1016/S0378-3758(97)00119-5
  41. Wu, Q. G., 10.1016/S0378-3758(00)00084-7, Journal of Statistical Planning and Inference 88 (2000), 285–300. (2000) Zbl0951.62045MR1792046DOI10.1016/S0378-3758(00)00084-7
  42. Wu, X. Y., Liang, H., Zou, G. H., Unbiased invariant least squares estimation in a generalized growth curve model, Sankhyā A 71, 1 (2009), 73–93. (2009) Zbl1193.62100MR2579649
  43. Wu, H., Zhang J. T., Local polynomial mixed-effects models for longitudinal data, Journal of the American Statistical Association 97, 459 (2002), 883–897. (2002) Zbl1048.62048MR1941417
  44. Wu, X. Y., Zou, G. H., Chen, J. W., 10.1016/j.jmva.2006.05.007, Journal of Multivariate Analysis 97 (2006), 1718–1741. (2006) Zbl1112.62054MR2298885DOI10.1016/j.jmva.2006.05.007
  45. Wu, X. Y., Zou, G. H., Li, Y. F., 10.1016/j.jmva.2008.10.007, Journal of Multivariate Analysis 100 (2009), 1061–1072. (2009) Zbl1157.62035MR2498732DOI10.1016/j.jmva.2008.10.007
  46. Xu, L., Stoica, P., Li, J., 10.1109/TSP.2006.879296, IEEE Transactions on Signal Processing 54, 9 (2006), 3363–3371. (2006) DOI10.1109/TSP.2006.879296
  47. Xu, L., Stoica, P., Li, J., 10.1016/j.dsp.2006.05.005, Digital Signal Processing 16 (2006), 902–912. (2006) DOI10.1016/j.dsp.2006.05.005
  48. Yang, G. Q., Wu, Q. G., 10.1016/S0047-259X(03)00058-7, Journal of Multivariate Analysis 88 (2004), 76–88. (2004) Zbl1032.62063MR2021861DOI10.1016/S0047-259X(03)00058-7
  49. Ye, R. D., Wang, S. G., 10.1016/j.jspi.2008.12.012, Journal of Statistical Planning and Inference 139 (2009), 2746–2756. (2009) Zbl1162.62055MR2523663DOI10.1016/j.jspi.2008.12.012
  50. Yokoyama, T., Estimation in a random effects model with parallel polynomial growth curves, Hiroshima Mathematical Journal 31 (2001), 425–433. (2001) Zbl0989.62034MR1870985
  51. Žežula, I., 10.1016/j.jmva.2005.10.001, Journal of Multivariate Analysis 97 (2006), 606–618. (2006) Zbl1101.62042MR2236492DOI10.1016/j.jmva.2005.10.001
  52. Žežula, I., Klein, D., Orthogonal decompositions in growth curve models, Acta et Commentationes Universitatis Tartuensis de Mathematica 14 (2010), 35–44. (2010) Zbl1228.62065MR2816617

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.