Functigraphs: An extension of permutation graphs

Andrew Chen; Daniela Ferrero; Ralucca Gera; Eunjeong Yi

Mathematica Bohemica (2011)

  • Volume: 136, Issue: 1, page 27-37
  • ISSN: 0862-7959

Abstract

top
Let G 1 and G 2 be copies of a graph G , and let f : V ( G 1 ) V ( G 2 ) be a function. Then a functigraph C ( G , f ) = ( V , E ) is a generalization of a permutation graph, where V = V ( G 1 ) V ( G 2 ) and E = E ( G 1 ) E ( G 2 ) { u v : u V ( G 1 ) , v V ( G 2 ) , v = f ( u ) } . In this paper, we study colorability and planarity of functigraphs.

How to cite

top

Chen, Andrew, et al. "Functigraphs: An extension of permutation graphs." Mathematica Bohemica 136.1 (2011): 27-37. <http://eudml.org/doc/197079>.

@article{Chen2011,
abstract = {Let $G_1$ and $G_2$ be copies of a graph $G$, and let $f\colon V(G_1) \rightarrow V(G_2)$ be a function. Then a functigraph $C(G, f)=(V, E)$ is a generalization of a permutation graph, where $V=V(G_1) \cup V(G_2)$ and $E=E(G_1) \cup E(G_2)\cup \lbrace uv \colon u \in V(G_1), v \in V(G_2),v=f(u)\rbrace $. In this paper, we study colorability and planarity of functigraphs.},
author = {Chen, Andrew, Ferrero, Daniela, Gera, Ralucca, Yi, Eunjeong},
journal = {Mathematica Bohemica},
keywords = {permutation graph; generalized Petersen graph; functigraph; permutation graph; generalized Petersen graph; functigraph},
language = {eng},
number = {1},
pages = {27-37},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Functigraphs: An extension of permutation graphs},
url = {http://eudml.org/doc/197079},
volume = {136},
year = {2011},
}

TY - JOUR
AU - Chen, Andrew
AU - Ferrero, Daniela
AU - Gera, Ralucca
AU - Yi, Eunjeong
TI - Functigraphs: An extension of permutation graphs
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 1
SP - 27
EP - 37
AB - Let $G_1$ and $G_2$ be copies of a graph $G$, and let $f\colon V(G_1) \rightarrow V(G_2)$ be a function. Then a functigraph $C(G, f)=(V, E)$ is a generalization of a permutation graph, where $V=V(G_1) \cup V(G_2)$ and $E=E(G_1) \cup E(G_2)\cup \lbrace uv \colon u \in V(G_1), v \in V(G_2),v=f(u)\rbrace $. In this paper, we study colorability and planarity of functigraphs.
LA - eng
KW - permutation graph; generalized Petersen graph; functigraph; permutation graph; generalized Petersen graph; functigraph
UR - http://eudml.org/doc/197079
ER -

References

top
  1. Chartrand, G., Frechen, J. B., On the chromatic number of permutation graphs, Proof Tech. Graph Theory, Proc. 2nd Ann Arbor Graph Theory Conf. 1968 21-24 (1969). (1969) Zbl0199.59401MR0250934
  2. Chartrand, G., Harary, F., Planar permutation graphs, Ann. Inst. Henri. Poincaré, Nouv. Sér., Sect. B 3 433-438 (1967). (1967) Zbl0162.27605MR0227041
  3. Chartrand, G., Zhang, P., Introduction to Graph Theory, McGraw-Hill, Kalamazoo, MI (2004). (2004) 
  4. Hedetniemi, S., 10.1007/BFb0060115, Many Facets of Graph Theory, Proc. Conf. Western Michigan Univ., Kalamazoo/Mi. 1968, Lect. Notes Math. 110 171-189 (1969). (1969) Zbl0191.54905MR0250921DOI10.1007/BFb0060115
  5. Judson, T. W., Abstract Algebra: theory and applications, Boston, MA: PWS Publishing Company (1994). (1994) Zbl0823.00002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.