On the number of limit cycles of a generalized Abel equation

Naeem Alkoumi; Pedro J. Torres

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 1, page 73-83
  • ISSN: 0011-4642

Abstract

top
New results are proved on the maximum number of isolated T -periodic solutions (limit cycles) of a first order polynomial differential equation with periodic coefficients. The exponents of the polynomial may be negative. The results are compared with the available literature and applied to a class of polynomial systems on the cylinder.

How to cite

top

Alkoumi, Naeem, and Torres, Pedro J.. "On the number of limit cycles of a generalized Abel equation." Czechoslovak Mathematical Journal 61.1 (2011): 73-83. <http://eudml.org/doc/197103>.

@article{Alkoumi2011,
abstract = {New results are proved on the maximum number of isolated $T$-periodic solutions (limit cycles) of a first order polynomial differential equation with periodic coefficients. The exponents of the polynomial may be negative. The results are compared with the available literature and applied to a class of polynomial systems on the cylinder.},
author = {Alkoumi, Naeem, Torres, Pedro J.},
journal = {Czechoslovak Mathematical Journal},
keywords = {periodic solution; limit cycle; polynomial nonlinearity; periodic solution; limit cycle; polynomial nonlinearity},
language = {eng},
number = {1},
pages = {73-83},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the number of limit cycles of a generalized Abel equation},
url = {http://eudml.org/doc/197103},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Alkoumi, Naeem
AU - Torres, Pedro J.
TI - On the number of limit cycles of a generalized Abel equation
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 73
EP - 83
AB - New results are proved on the maximum number of isolated $T$-periodic solutions (limit cycles) of a first order polynomial differential equation with periodic coefficients. The exponents of the polynomial may be negative. The results are compared with the available literature and applied to a class of polynomial systems on the cylinder.
LA - eng
KW - periodic solution; limit cycle; polynomial nonlinearity; periodic solution; limit cycle; polynomial nonlinearity
UR - http://eudml.org/doc/197103
ER -

References

top
  1. Álvarez, A., Bravo, J.-L., Fernández, M., 10.3934/cpaa.2009.8.1493, Commun. Pure Appl. Anal. 8 (2009), 1493-1501. (2009) MR2505282DOI10.3934/cpaa.2009.8.1493
  2. Álvarez, M. J., Gasull, A., Giacomini, H., 10.1016/j.jde.2006.11.004, J. Differ. Equations 234 (2007), 161-176. (2007) MR2298969DOI10.1016/j.jde.2006.11.004
  3. Álvarez, M. J., Gasull, A., Prohens, R., 10.1016/j.bulsci.2006.04.005, Bull. Sci. Math. 131 (2007), 620-637. (2007) MR2391338DOI10.1016/j.bulsci.2006.04.005
  4. Alwash, M. A. M., Periodic solutions of polynomial non-autonomous differential equations, Electron. J. Differ. Equ. 2005 (2005), 1-8. (2005) Zbl1075.34514MR2162245
  5. Alwash, M. A. M., 10.1016/j.jmaa.2006.07.039, J. Math. Anal. Appl. 329 (2007), 1161-1169. (2007) Zbl1154.34397MR2296914DOI10.1016/j.jmaa.2006.07.039
  6. Cherkas, L A., Number of limit cycles of an autonomous second-order system, Differ. Equations 12 (1976), 666-668. (1976) 
  7. Gasull, A., Guillamon, A., 10.1142/S0218127406017130, Int. J. Bifurcation Chaos Appl. Sci. Eng. 16 (2006), 3737-3745. (2006) Zbl1140.34348MR2295352DOI10.1142/S0218127406017130
  8. Gasull, A., Llibre, J., 10.1137/0521068, SIAM J. Math. Anal. 21 (1990), 1235-1244. (1990) Zbl0732.34025MR1062402DOI10.1137/0521068
  9. Gasull, A., Torregrosa, J., 10.1090/S0002-9939-04-07542-2, Proc. Am. Math. Soc. 133 (2005), 751-758. (2005) Zbl1062.34030MR2113924DOI10.1090/S0002-9939-04-07542-2
  10. Korman, P., Ouyang, T., 10.1006/jmaa.1995.1328, J. Math. Anal. Appl. 194 (1995), 763-379. (1995) Zbl0844.34036MR1350195DOI10.1006/jmaa.1995.1328
  11. Lins-Neto, A., On the number of solutions of the equation j = 0 n a j ( t ) x j , 0 t 1 , for which x ( 0 ) = x ( 1 ) , Invent. Math. 59 (1980), 69-76. (1980) 
  12. Nkashama, M. N., 10.1016/0022-247X(89)90072-3, J. Math. Anal. Appl. 140 (1989), 381-395. (1989) Zbl0674.34009MR1001864DOI10.1016/0022-247X(89)90072-3
  13. Pliss, V. A., Nonlocal Problems of the Theory of Oscillations, Academic Press New York (1966). (1966) Zbl0151.12104MR0196199
  14. Sandqvist, A., Andersen, K. M., 10.1016/0022-247X(91)90225-O, J. Math. Anal. Appl. 159 (1991), 127-146. (1991) MR1119425DOI10.1016/0022-247X(91)90225-O

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.