On the number of limit cycles of a generalized Abel equation
Naeem Alkoumi; Pedro J. Torres
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 1, page 73-83
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAlkoumi, Naeem, and Torres, Pedro J.. "On the number of limit cycles of a generalized Abel equation." Czechoslovak Mathematical Journal 61.1 (2011): 73-83. <http://eudml.org/doc/197103>.
@article{Alkoumi2011,
abstract = {New results are proved on the maximum number of isolated $T$-periodic solutions (limit cycles) of a first order polynomial differential equation with periodic coefficients. The exponents of the polynomial may be negative. The results are compared with the available literature and applied to a class of polynomial systems on the cylinder.},
author = {Alkoumi, Naeem, Torres, Pedro J.},
journal = {Czechoslovak Mathematical Journal},
keywords = {periodic solution; limit cycle; polynomial nonlinearity; periodic solution; limit cycle; polynomial nonlinearity},
language = {eng},
number = {1},
pages = {73-83},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the number of limit cycles of a generalized Abel equation},
url = {http://eudml.org/doc/197103},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Alkoumi, Naeem
AU - Torres, Pedro J.
TI - On the number of limit cycles of a generalized Abel equation
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 73
EP - 83
AB - New results are proved on the maximum number of isolated $T$-periodic solutions (limit cycles) of a first order polynomial differential equation with periodic coefficients. The exponents of the polynomial may be negative. The results are compared with the available literature and applied to a class of polynomial systems on the cylinder.
LA - eng
KW - periodic solution; limit cycle; polynomial nonlinearity; periodic solution; limit cycle; polynomial nonlinearity
UR - http://eudml.org/doc/197103
ER -
References
top- Álvarez, A., Bravo, J.-L., Fernández, M., 10.3934/cpaa.2009.8.1493, Commun. Pure Appl. Anal. 8 (2009), 1493-1501. (2009) MR2505282DOI10.3934/cpaa.2009.8.1493
- Álvarez, M. J., Gasull, A., Giacomini, H., 10.1016/j.jde.2006.11.004, J. Differ. Equations 234 (2007), 161-176. (2007) MR2298969DOI10.1016/j.jde.2006.11.004
- Álvarez, M. J., Gasull, A., Prohens, R., 10.1016/j.bulsci.2006.04.005, Bull. Sci. Math. 131 (2007), 620-637. (2007) MR2391338DOI10.1016/j.bulsci.2006.04.005
- Alwash, M. A. M., Periodic solutions of polynomial non-autonomous differential equations, Electron. J. Differ. Equ. 2005 (2005), 1-8. (2005) Zbl1075.34514MR2162245
- Alwash, M. A. M., 10.1016/j.jmaa.2006.07.039, J. Math. Anal. Appl. 329 (2007), 1161-1169. (2007) Zbl1154.34397MR2296914DOI10.1016/j.jmaa.2006.07.039
- Cherkas, L A., Number of limit cycles of an autonomous second-order system, Differ. Equations 12 (1976), 666-668. (1976)
- Gasull, A., Guillamon, A., 10.1142/S0218127406017130, Int. J. Bifurcation Chaos Appl. Sci. Eng. 16 (2006), 3737-3745. (2006) Zbl1140.34348MR2295352DOI10.1142/S0218127406017130
- Gasull, A., Llibre, J., 10.1137/0521068, SIAM J. Math. Anal. 21 (1990), 1235-1244. (1990) Zbl0732.34025MR1062402DOI10.1137/0521068
- Gasull, A., Torregrosa, J., 10.1090/S0002-9939-04-07542-2, Proc. Am. Math. Soc. 133 (2005), 751-758. (2005) Zbl1062.34030MR2113924DOI10.1090/S0002-9939-04-07542-2
- Korman, P., Ouyang, T., 10.1006/jmaa.1995.1328, J. Math. Anal. Appl. 194 (1995), 763-379. (1995) Zbl0844.34036MR1350195DOI10.1006/jmaa.1995.1328
- Lins-Neto, A., On the number of solutions of the equation , , for which , Invent. Math. 59 (1980), 69-76. (1980)
- Nkashama, M. N., 10.1016/0022-247X(89)90072-3, J. Math. Anal. Appl. 140 (1989), 381-395. (1989) Zbl0674.34009MR1001864DOI10.1016/0022-247X(89)90072-3
- Pliss, V. A., Nonlocal Problems of the Theory of Oscillations, Academic Press New York (1966). (1966) Zbl0151.12104MR0196199
- Sandqvist, A., Andersen, K. M., 10.1016/0022-247X(91)90225-O, J. Math. Anal. Appl. 159 (1991), 127-146. (1991) MR1119425DOI10.1016/0022-247X(91)90225-O
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.