On regular endomorphism rings of topological Abelian groups
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 2, page 521-530
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAbrudan, Horea Florian. "On regular endomorphism rings of topological Abelian groups." Czechoslovak Mathematical Journal 61.2 (2011): 521-530. <http://eudml.org/doc/197124>.
@article{Abrudan2011,
abstract = {We extend a result of Rangaswamy about regularity of endomorphism rings of Abelian groups to arbitrary topological Abelian groups. Regularity of discrete quasi-injective modules over compact rings modulo radical is proved. A characterization of torsion LCA groups $A$ for which $\{\rm End\}_c(A)$ is regular is given.},
author = {Abrudan, Horea Florian},
journal = {Czechoslovak Mathematical Journal},
keywords = {$m$-regular ring; discrete module; quasi-injective module; linearly compact group; LCA group; local product; regular endomorphism rings; topological Abelian groups; discrete modules; quasi-injective modules; linearly compact groups; LCA groups; local products},
language = {eng},
number = {2},
pages = {521-530},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On regular endomorphism rings of topological Abelian groups},
url = {http://eudml.org/doc/197124},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Abrudan, Horea Florian
TI - On regular endomorphism rings of topological Abelian groups
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 521
EP - 530
AB - We extend a result of Rangaswamy about regularity of endomorphism rings of Abelian groups to arbitrary topological Abelian groups. Regularity of discrete quasi-injective modules over compact rings modulo radical is proved. A characterization of torsion LCA groups $A$ for which ${\rm End}_c(A)$ is regular is given.
LA - eng
KW - $m$-regular ring; discrete module; quasi-injective module; linearly compact group; LCA group; local product; regular endomorphism rings; topological Abelian groups; discrete modules; quasi-injective modules; linearly compact groups; LCA groups; local products
UR - http://eudml.org/doc/197124
ER -
References
top- Abrudan, H. F., Ursul, M., Boundedness of topological endomorphism rings of torsion Abelian groups, Contr. to Gen. Algebra 17 (2006), 1-8. (2006) Zbl1119.20049MR2237800
- Bourbaki, N., Obshchaya topologia. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva, Izdatel'stvo ``Nauka'', Moscow, 1969 (In Russian). French original: Elements de Mathematique. Topologie Generale. Ch. III--VIII, Hermann. MR0256328
- Faith, C., Algebra II---Ring Theory, Springer-Verlag, Berlin-Heidelberg-New York (1976). (1976) MR0427349
- Faith, C., Utumi, Y., 10.1007/BF01589182, Arch. Math. 15 (1964), 166-174. (1964) Zbl0131.27502MR0166226DOI10.1007/BF01589182
- Fuchs, L., Infinite Abelian Groups, Vol. II, Academic Press, New York (1973). (1973) Zbl0257.20035MR0349869
- Johnson, R. E., Wong, E. T., 10.1112/jlms/s1-36.1.260, J. Lond. Math. Soc. 36 (1961), 260-268. (1961) Zbl0103.02203MR0131445DOI10.1112/jlms/s1-36.1.260
- Osofsky, B. L., 10.4153/CJM-1968-086-3, Canad. J. Math. 20 (1968), 895-903. (1968) Zbl0162.05101MR0231856DOI10.4153/CJM-1968-086-3
- Rangaswamy, K. M., 10.1016/0021-8693(67)90082-8, J. of Algebra 6 (1969), 271-280. (1969) MR0217180DOI10.1016/0021-8693(67)90082-8
- Stroppel, M., Locally Compact Groups, EMS Textbooks in Mathematics, European Mathematical Society Publishing House, Zurich (2006). (2006) Zbl1102.22005MR2226087
- Ursul, M., Topological Rings Satisfying Compactness Conditions, Mathematics and its Applications, Vol. 549, Kluwer Academic Publishers, Dordrecht-Boston-London (2002). (2002) Zbl1041.16037MR1959470
- Utumi, Y., On quotient rings, Osaka Math. J. 8 (1956), 1-18. (1956) Zbl0070.26601MR0078966
- Utumi, Y., 10.1016/0021-8693(67)90013-0, J. Algebra 6 (1967), 56-64. (1967) Zbl0161.03803MR0209321DOI10.1016/0021-8693(67)90013-0
- Warner, S., Topological Rings, North-Holland, Amsterdam-London-New York-Tokyo (1993). (1993) Zbl0785.13008MR1240057
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.