Twenty years of modern methods of inner point

Margaréta Halická

Pokroky matematiky, fyziky a astronomie (2004)

  • Volume: 49, Issue: 3, page 234-244
  • ISSN: 0032-2423

How to cite

top

Halická, Margaréta. "Dvadsať rokov moderných metód vnútorného bodu." Pokroky matematiky, fyziky a astronomie 49.3 (2004): 234-244. <http://eudml.org/doc/197158>.

@article{Halická2004,
author = {Halická, Margaréta},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {linear programming; interior point method; linear programming; interior point method},
language = {slo},
number = {3},
pages = {234-244},
publisher = {Jednota českých matematiků a fyziků},
title = {Dvadsať rokov moderných metód vnútorného bodu},
url = {http://eudml.org/doc/197158},
volume = {49},
year = {2004},
}

TY - JOUR
AU - Halická, Margaréta
TI - Dvadsať rokov moderných metód vnútorného bodu
JO - Pokroky matematiky, fyziky a astronomie
PY - 2004
PB - Jednota českých matematiků a fyziků
VL - 49
IS - 3
SP - 234
EP - 244
LA - slo
KW - linear programming; interior point method; linear programming; interior point method
UR - http://eudml.org/doc/197158
ER -

References

top
  1. Dikin, I., An iterative solution of problems of linear and quadratic programming, Doklady AN SSSR 174 (1967), 747–751. (1967) Zbl0189.19504MR0221850
  2. Fiacco, A., Mc-Cormick, G., Nonlinear Programming: Sequential unconstrained minimization techniques, John Wiley and Sons, Inc., New York 1968. (1968) MR0243831
  3. Frisch, K. R., The logarithmic potential method of convex programming, University Institute of Economics, Memorandum, Oslo, Norway 1955. (1955) 
  4. Gill, P., Murray, W., Saunders, M., Tomlin, J., Wright, M., 10.1007/BF02592025, Math. Programming 36 (1986), 183–209. (1986) Zbl0624.90062MR0866988DOI10.1007/BF02592025
  5. Huard, P., Resolution of mathematical programming with nonlinear constraints by the method of centers, In Nonlinear Programming, J. Abadie, ed., North-Holland, Amsterdam 1967. (1967) Zbl0157.49701MR0216865
  6. Interior-Point Archive, URL: http://www.mcs.anl.gov/otc/InteriorPoint 
  7. Karmarkar, N., 10.1007/BF02579150, Combinatorica 4 (1984), 373–395. (1984) Zbl0557.90065MR0779900DOI10.1007/BF02579150
  8. Khachian, L. G., A polynomial algorithm in linear programming, Doklady AN SSSR 244 (1979), 1093–1096. (1979) MR0522052
  9. Klee, V., Minty, G., How good is the simplex algorithm?, In: O. Shisha, ed., “Inequalities-III”. Academic Press, New York 1972. (1972) Zbl0297.90047MR0332165
  10. Lawler, E. L., Velký matematický sputnik roku 1979, PMFA 27 (1982), 39–47. (1982) MR0503698
  11. Lovász, L., Je nový algoritmus lineárního programování lepší nebo horší než simplexová metóda?, PMFA 26 (1981), 193–202. (1981) 
  12. Nesterov, Y. E., Nemirovsky, A. S., Interior Point Polynomial Algorithms in Convex Programming, SIAM Publications, Philadelphia, USA, 1994. (1994) MR1258086
  13. Optimization Online, URL: http://www.optimization-online.org Zbl1153.93531
  14. Vanderbei, R. J., Linear Programming. Foundations and Extensions, Kluwer Academic Publishers, Boston/London/Dortrecht 1997. Elektronicky prístupné na http://www.princeton.edu/ rvdb/LPbook/index.html (1997) Zbl0874.90133MR1845638
  15. Wright, M. H., The interior-point revolution in constrained optimization, In: R. DeLeone, A. Murli, P. M. Pardalos, G. Toraldo: High-Performance Algorithms and Software in Nonlinear Optimization, 359–381, Kluwer Academic Publishers 1998. (1998) Zbl0944.65065MR1789725

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.