On the existence of a Haar measure in topological IP-loops

Beáta Stehlíková; Dagmar Markechová; Anna Tirpáková

Kybernetika (2011)

  • Volume: 47, Issue: 5, page 740-754
  • ISSN: 0023-5954

Abstract

top
In this paper, we give conditions ensuring the existence of a Haar measure in topological IP-loops.

How to cite

top

Stehlíková, Beáta, Markechová, Dagmar, and Tirpáková, Anna. "On the existence of a Haar measure in topological IP-loops." Kybernetika 47.5 (2011): 740-754. <http://eudml.org/doc/197162>.

@article{Stehlíková2011,
abstract = {In this paper, we give conditions ensuring the existence of a Haar measure in topological IP-loops.},
author = {Stehlíková, Beáta, Markechová, Dagmar, Tirpáková, Anna},
journal = {Kybernetika},
keywords = {quasigroup; topological IP-loop; Haar measure; content; uniform; space; left-invariant uniformity; quasigroup; topological IP-loop; Haar measure; left-invariant uniformity},
language = {eng},
number = {5},
pages = {740-754},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the existence of a Haar measure in topological IP-loops},
url = {http://eudml.org/doc/197162},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Stehlíková, Beáta
AU - Markechová, Dagmar
AU - Tirpáková, Anna
TI - On the existence of a Haar measure in topological IP-loops
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 5
SP - 740
EP - 754
AB - In this paper, we give conditions ensuring the existence of a Haar measure in topological IP-loops.
LA - eng
KW - quasigroup; topological IP-loop; Haar measure; content; uniform; space; left-invariant uniformity; quasigroup; topological IP-loop; Haar measure; left-invariant uniformity
UR - http://eudml.org/doc/197162
ER -

References

top
  1. Baez, J., 10.1090/S0273-0979-01-00934-X, Bull. Amer. Math. Soc. 39 (2002), 145–205. (2002) Zbl1026.17001MR1886087DOI10.1090/S0273-0979-01-00934-X
  2. Belousov, V. D., Foundations of the Theory of Quasigroups and Loops (in Russian), Nauka, Moscow, 1967. (1967) MR0218483
  3. Bruck, R. H., Some results in the theory of quasigroups, Trans. Amer. Math. Soc. 55 (1944), 19–52. (1944) Zbl0063.00635MR0009963
  4. Bruck, R. H., Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245–354. (1946) Zbl0061.02201MR0017288
  5. Haar, A., 10.2307/1968346, Ann. Math. 34 (1933), 147–169. (1933) Zbl0006.10103MR1503103DOI10.2307/1968346
  6. Halmos, P., Measure Theory, Springer-Verlag New York Inc. 1974. (1974) Zbl0283.28001MR0453532
  7. Hudson, S. N., 10.1090/S0002-9939-1964-0167962-X, Proc. Amer. Math. Soc. 15 (1964), 872–877. (1964) MR0167962DOI10.1090/S0002-9939-1964-0167962-X
  8. Hudson, S. N., 10.1090/S0002-9947-1963-0155302-5, Trans. Amer. Math. Soc. 109 (1963), 1, 181–190. (1963) Zbl0115.02501MR0155302DOI10.1090/S0002-9947-1963-0155302-5
  9. Chein, O., Pflugfelder, H. O., Smith, J. D. H., Quasigroups and Loops, Theory and Application. Heldermann Verlag, 1990. (1990) Zbl0719.20036MR1125806
  10. Kinyon, M. K., Kunen, K., Phillips, J. D., 10.1090/S0002-9939-01-06090-7, Proc. Amer. Math. Soc. 130 (2002), 619–624. (2002) Zbl0990.20044MR1866009DOI10.1090/S0002-9939-01-06090-7
  11. Markechová, D., Stehlíková, B., Tirpáková, A., The uniqueness of a left Haar measure in topological IP-loops, (Submitted for publication). 
  12. Moufang, R., 10.1007/BF01448037, Math. Ann. 110 (1935), 416–430. (1935) MR1512948DOI10.1007/BF01448037
  13. Nagy, P. T., Strambach, K., 10.1007/s10958-006-0289-1, J. Math. Sci. 137 (2006), 5, 5098–5116. (2006) Zbl1181.22009MR2462071DOI10.1007/s10958-006-0289-1
  14. Nagy, P. T., Strambach, K., Loops in Group Theory and Lie Theory, De Gruyter Expositions in Mathematics, Berlin – New York 2002. (2002) Zbl1050.22001MR1899331
  15. Pflugfelder, H. O., Quasigroups and Loops, Introduction. Heldermann Verlag, 1990. (1990) Zbl0719.20036MR1125767
  16. Riečan, B., Neubrunn, T., Integral, Measure and Ordering, Kluwer Academic Publishers 1997. (1997) MR1489521
  17. Schwarz, Š., On the existence of invariant measures on certain types of bicompact semigroups (in Russian), Czechoslovak Math. J. 7 (1957), 82, 165–182. (1957) MR0089364
  18. Smith, J. D. H., Quasigroup Representation Theory, Taylor & Francis, 2006. (2006) 
  19. Weil, A., Basic Number Theory, Academic Press, 1971. (1971) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.