On Volterra composition operators from Bergman-type space to Bloch-type space

Zhi Jie Jiang

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 4, page 993-1005
  • ISSN: 0011-4642

Abstract

top
Let ϕ be an analytic self-mapping of 𝔻 and g an analytic function on 𝔻 . In this paper we characterize the bounded and compact Volterra composition operators from the Bergman-type space to the Bloch-type space. We also obtain an asymptotical expression of the essential norm of these operators in terms of the symbols g and ϕ .

How to cite

top

Jiang, Zhi Jie. "On Volterra composition operators from Bergman-type space to Bloch-type space." Czechoslovak Mathematical Journal 61.4 (2011): 993-1005. <http://eudml.org/doc/197171>.

@article{Jiang2011,
abstract = {Let $\varphi $ be an analytic self-mapping of $\mathbb \{D\}$ and $g$ an analytic function on $\mathbb \{D\}$. In this paper we characterize the bounded and compact Volterra composition operators from the Bergman-type space to the Bloch-type space. We also obtain an asymptotical expression of the essential norm of these operators in terms of the symbols $g$ and $\varphi $.},
author = {Jiang, Zhi Jie},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bergman-type space; Volterra composition operator; Bloch-type space; little Bloch-type space; essential norm; Bergman-type space; Volterra composition operator; Bloch-type space; little Bloch-type space; essential norm},
language = {eng},
number = {4},
pages = {993-1005},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Volterra composition operators from Bergman-type space to Bloch-type space},
url = {http://eudml.org/doc/197171},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Jiang, Zhi Jie
TI - On Volterra composition operators from Bergman-type space to Bloch-type space
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 993
EP - 1005
AB - Let $\varphi $ be an analytic self-mapping of $\mathbb {D}$ and $g$ an analytic function on $\mathbb {D}$. In this paper we characterize the bounded and compact Volterra composition operators from the Bergman-type space to the Bloch-type space. We also obtain an asymptotical expression of the essential norm of these operators in terms of the symbols $g$ and $\varphi $.
LA - eng
KW - Bergman-type space; Volterra composition operator; Bloch-type space; little Bloch-type space; essential norm; Bergman-type space; Volterra composition operator; Bloch-type space; little Bloch-type space; essential norm
UR - http://eudml.org/doc/197171
ER -

References

top
  1. Aleman, A., Cima, J. A., 10.1007/BF02788078, J. Anal. Math. 85 (2001), 157-176. (2001) MR1869606DOI10.1007/BF02788078
  2. Aleman, A., Siskakis, A. G., 10.1080/17476939508814844, Complex Variables, Theory Appl. 28 (1995), 149-158. (1995) MR1700079DOI10.1080/17476939508814844
  3. Aleman, A., Siskakis, A. G., 10.1512/iumj.1997.46.1373, Indiana Univ. Math. J. 46 (1997), 337-356. (1997) Zbl0951.47039MR1481594DOI10.1512/iumj.1997.46.1373
  4. Cowen, C. C., MacCluer, B. D., Composition Operators on Spaces of Analytic Functions, CRC Press Boca Raton (1995). (1995) Zbl0873.47017MR1397026
  5. Hu, Z. J., 10.1090/S0002-9939-02-06777-1, Proc. Am. Math. Soc. 131 (2003), 2171-2179. (2003) Zbl1054.47023MR1963765DOI10.1090/S0002-9939-02-06777-1
  6. Li, S., 10.4134/JKMS.2008.45.1.229, J. Korean Math. Soc. 45 (2008), 229-248. (2008) Zbl1151.47040MR2375133DOI10.4134/JKMS.2008.45.1.229
  7. Li, S., Stević, S., 10.1007/s12044-007-0032-y, Proc. Indian Acad. Sci., Math. Sci. 117 (2007), 371-385. (2007) MR2352056DOI10.1007/s12044-007-0032-y
  8. Shapiro, J. H., Composition Operators and Classical Function Theory, Springer New York (1993). (1993) Zbl0791.30033MR1237406
  9. Siskakis, A. G., Zhao, R., 10.1090/conm/232/03406, Contemp. Math. 232 (1999), 299-311. (1999) Zbl0955.47029MR1678342DOI10.1090/conm/232/03406
  10. Wolf, E., 10.1007/BF03191226, Collect. Math. 61 (2010), 57-63. (2010) Zbl1213.47028MR2604859DOI10.1007/BF03191226
  11. Xiao, J., 10.1112/S0024610704005484, J. Lond. Math. Soc., II. Ser. 70 (2004), 199-214. (2004) MR2064758DOI10.1112/S0024610704005484

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.