On an inclusion between operator ideals
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 1, page 209-212
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFugarolas, Manuel A.. "On an inclusion between operator ideals." Czechoslovak Mathematical Journal 61.1 (2011): 209-212. <http://eudml.org/doc/197217>.
@article{Fugarolas2011,
abstract = {Let $ 1\le q <p < \infty $ and $1/r := 1/p \max (q/2, 1)$. We prove that $\{\mathcal \{L\}\}_\{r,p\}^\{(c)\}$, the ideal of operators of Geľfand type $l_\{r,p\}$, is contained in the ideal $\Pi _\{p,q\}$ of $(p,q)$-absolutely summing operators. For $q>2$ this generalizes a result of G. Bennett given for operators on a Hilbert space.},
author = {Fugarolas, Manuel A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {operator ideals; $s$-numbers; operator ideal; -number},
language = {eng},
number = {1},
pages = {209-212},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On an inclusion between operator ideals},
url = {http://eudml.org/doc/197217},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Fugarolas, Manuel A.
TI - On an inclusion between operator ideals
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 209
EP - 212
AB - Let $ 1\le q <p < \infty $ and $1/r := 1/p \max (q/2, 1)$. We prove that ${\mathcal {L}}_{r,p}^{(c)}$, the ideal of operators of Geľfand type $l_{r,p}$, is contained in the ideal $\Pi _{p,q}$ of $(p,q)$-absolutely summing operators. For $q>2$ this generalizes a result of G. Bennett given for operators on a Hilbert space.
LA - eng
KW - operator ideals; $s$-numbers; operator ideal; -number
UR - http://eudml.org/doc/197217
ER -
References
top- Bennett, G., 10.4064/sm-55-1-27-40, Studia Math. 55 (1976), 27-40. (1976) Zbl0338.47013MR0420297DOI10.4064/sm-55-1-27-40
- Bennett, G., Goodman, V., Newman, C. M., 10.2140/pjm.1975.59.359, Pacific J. Math. 59 (1975), 359-365. (1975) Zbl0325.47018MR0393085DOI10.2140/pjm.1975.59.359
- Bergh, J., Löfström, J., Interpolation Spaces, Springer, Berlin (1976). (1976)
- Carl, B., 10.4064/sm-69-2-143-148, Studia Math. 69 (1980), 143-148. (1980) Zbl0468.47012MR0604346DOI10.4064/sm-69-2-143-148
- König, H., 10.1007/BF01351495, Math. Ann. 233 (1978), 35-48. (1978) MR0482266DOI10.1007/BF01351495
- König, H., Eigenvalue Distribution of Compact Operators, Birkhäuser, Basel (1986). (1986) MR0889455
- Peetre, J., Sparr, G., 10.1007/BF02417949, Ann. Mat. Pura Appl. 92 (1972), 217-262. (1972) Zbl0237.46039MR0322529DOI10.1007/BF02417949
- Pietsch, A., 10.1007/BF01364141, Math. Ann. 247 (1980), 149-168. (1980) Zbl0428.47027MR0568205DOI10.1007/BF01364141
- Pietsch, A., Operator Ideals, North-Holland, Amsterdam (1980). (1980) Zbl0455.47032MR0582655
- Pietsch, A., Eigenvalues and -numbers, Cambridge Univ. Press (1987). (1987) Zbl0615.47019MR0890520
- Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam (1978). (1978) Zbl0387.46033MR0503903
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.