On an inclusion between operator ideals

Manuel A. Fugarolas

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 1, page 209-212
  • ISSN: 0011-4642

Abstract

top
Let 1 q < p < and 1 / r : = 1 / p max ( q / 2 , 1 ) . We prove that r , p ( c ) , the ideal of operators of Geľfand type l r , p , is contained in the ideal Π p , q of ( p , q ) -absolutely summing operators. For q > 2 this generalizes a result of G. Bennett given for operators on a Hilbert space.

How to cite

top

Fugarolas, Manuel A.. "On an inclusion between operator ideals." Czechoslovak Mathematical Journal 61.1 (2011): 209-212. <http://eudml.org/doc/197217>.

@article{Fugarolas2011,
abstract = {Let $ 1\le q <p < \infty $ and $1/r := 1/p \max (q/2, 1)$. We prove that $\{\mathcal \{L\}\}_\{r,p\}^\{(c)\}$, the ideal of operators of Geľfand type $l_\{r,p\}$, is contained in the ideal $\Pi _\{p,q\}$ of $(p,q)$-absolutely summing operators. For $q>2$ this generalizes a result of G. Bennett given for operators on a Hilbert space.},
author = {Fugarolas, Manuel A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {operator ideals; $s$-numbers; operator ideal; -number},
language = {eng},
number = {1},
pages = {209-212},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On an inclusion between operator ideals},
url = {http://eudml.org/doc/197217},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Fugarolas, Manuel A.
TI - On an inclusion between operator ideals
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 209
EP - 212
AB - Let $ 1\le q <p < \infty $ and $1/r := 1/p \max (q/2, 1)$. We prove that ${\mathcal {L}}_{r,p}^{(c)}$, the ideal of operators of Geľfand type $l_{r,p}$, is contained in the ideal $\Pi _{p,q}$ of $(p,q)$-absolutely summing operators. For $q>2$ this generalizes a result of G. Bennett given for operators on a Hilbert space.
LA - eng
KW - operator ideals; $s$-numbers; operator ideal; -number
UR - http://eudml.org/doc/197217
ER -

References

top
  1. Bennett, G., 10.4064/sm-55-1-27-40, Studia Math. 55 (1976), 27-40. (1976) Zbl0338.47013MR0420297DOI10.4064/sm-55-1-27-40
  2. Bennett, G., Goodman, V., Newman, C. M., 10.2140/pjm.1975.59.359, Pacific J. Math. 59 (1975), 359-365. (1975) Zbl0325.47018MR0393085DOI10.2140/pjm.1975.59.359
  3. Bergh, J., Löfström, J., Interpolation Spaces, Springer, Berlin (1976). (1976) 
  4. Carl, B., 10.4064/sm-69-2-143-148, Studia Math. 69 (1980), 143-148. (1980) Zbl0468.47012MR0604346DOI10.4064/sm-69-2-143-148
  5. König, H., 10.1007/BF01351495, Math. Ann. 233 (1978), 35-48. (1978) MR0482266DOI10.1007/BF01351495
  6. König, H., Eigenvalue Distribution of Compact Operators, Birkhäuser, Basel (1986). (1986) MR0889455
  7. Peetre, J., Sparr, G., 10.1007/BF02417949, Ann. Mat. Pura Appl. 92 (1972), 217-262. (1972) Zbl0237.46039MR0322529DOI10.1007/BF02417949
  8. Pietsch, A., 10.1007/BF01364141, Math. Ann. 247 (1980), 149-168. (1980) Zbl0428.47027MR0568205DOI10.1007/BF01364141
  9. Pietsch, A., Operator Ideals, North-Holland, Amsterdam (1980). (1980) Zbl0455.47032MR0582655
  10. Pietsch, A., Eigenvalues and s -numbers, Cambridge Univ. Press (1987). (1987) Zbl0615.47019MR0890520
  11. Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam (1978). (1978) Zbl0387.46033MR0503903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.