Global convergence property of modified Levenberg-Marquardt methods for nonsmooth equations
Applications of Mathematics (2011)
- Volume: 56, Issue: 5, page 481-498
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDu, Shou-qiang, and Gao, Yan. "Global convergence property of modified Levenberg-Marquardt methods for nonsmooth equations." Applications of Mathematics 56.5 (2011): 481-498. <http://eudml.org/doc/197232>.
@article{Du2011,
abstract = {In this paper, we discuss the globalization of some kind of modified Levenberg-Marquardt methods for nonsmooth equations and their applications to nonlinear complementarity problems. In these modified Levenberg-Marquardt methods, only an approximate solution of a linear system at each iteration is required. Under some mild assumptions, the global convergence is shown. Finally, numerical results show that the present methods are promising.},
author = {Du, Shou-qiang, Gao, Yan},
journal = {Applications of Mathematics},
keywords = {nonsmooth equations; modified Levenberg-Marquardt method; global convergence; nonlinear complementarity problem; numerical results; nonsmooth equation; modified Levenberg-Marquardt method; global convergence; nonlinear complementarity problem; numerical results},
language = {eng},
number = {5},
pages = {481-498},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global convergence property of modified Levenberg-Marquardt methods for nonsmooth equations},
url = {http://eudml.org/doc/197232},
volume = {56},
year = {2011},
}
TY - JOUR
AU - Du, Shou-qiang
AU - Gao, Yan
TI - Global convergence property of modified Levenberg-Marquardt methods for nonsmooth equations
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 5
SP - 481
EP - 498
AB - In this paper, we discuss the globalization of some kind of modified Levenberg-Marquardt methods for nonsmooth equations and their applications to nonlinear complementarity problems. In these modified Levenberg-Marquardt methods, only an approximate solution of a linear system at each iteration is required. Under some mild assumptions, the global convergence is shown. Finally, numerical results show that the present methods are promising.
LA - eng
KW - nonsmooth equations; modified Levenberg-Marquardt method; global convergence; nonlinear complementarity problem; numerical results; nonsmooth equation; modified Levenberg-Marquardt method; global convergence; nonlinear complementarity problem; numerical results
UR - http://eudml.org/doc/197232
ER -
References
top- Bertsekas, D. P., Constrained Optimization and Lagrange Multiplier Methods, Academic Press New York (1982). (1982) Zbl0572.90067MR0690767
- Chen, X., Qi, L., 10.1007/BF01300972, Comput. Optim. Appl. 3 (1994), 157-179. (1994) Zbl0821.65029MR1273659DOI10.1007/BF01300972
- Cottle, R. W., Pang, J.-S., Stone, R. E., The Linear Complementarity Problem, Academic Press Boston (1992). (1992) Zbl0757.90078MR1150683
- Du, S.-Q., Gao, Y., A modified Levenberg-Marquardt method for nonsmooth equations with finitely many maximum functions, Math. Prob. Eng. (2008). (2008) Zbl1288.49011MR2476501
- Fischer, A., 10.1080/02331939208843795, Optim. 24 (1992), 269-284. (1992) Zbl0814.65063MR1247636DOI10.1080/02331939208843795
- Fischer, A., Jeyakumar, V., Luc, D. T., 10.1023/A:1017580126509, J. Optimization Theory Appl. 110 (2001), 493-513. (2001) Zbl1064.90048MR1854013DOI10.1023/A:1017580126509
- Facchinei, F., Kanzow, F., 10.1007/BF02614395, Math. Program. 76 (1997), 493-512. (1997) Zbl0871.90096MR1433968DOI10.1007/BF02614395
- Gao, Y., 10.1023/A:1013791923957, Appl. Math. 46 (2001), 215-229. (2001) Zbl1068.65063MR1828306DOI10.1023/A:1013791923957
- Geiger, C., Kanzow, C., 10.1007/BF00249054, Comput. Optim. Appl. 5 (1996), 155-173. (1996) Zbl0859.90113MR1373295DOI10.1007/BF00249054
- Jiang, H., 10.1007/BF00121662, J. Glob. Optim. 9 (1996), 169-181. (1996) Zbl0868.90122MR1411607DOI10.1007/BF00121662
- Moré, J. J., Sorensen, D. C., 10.1137/0904038, SIAM J. Sci. Stat. Comput. 4 (1983), 553-572. (1983) MR0723110DOI10.1137/0904038
- Qi, L., Tseng, P., 10.1016/j.na.2006.06.029, Nonlinear Anal. 67 (2007), 773-794. (2007) Zbl1125.26019MR2319208DOI10.1016/j.na.2006.06.029
- Qi, L., Sun, J., 10.1007/BF01581275, Math. Program. 58 (1993), 353-367. (1993) Zbl0780.90090MR1216791DOI10.1007/BF01581275
- Sun, D., Qi, L., 10.1023/A:1008669226453, Comput. Optim. Appl. 13 (1999), 201-220. (1999) Zbl1040.90544MR1704120DOI10.1023/A:1008669226453
- Yamashita, N., Fukushima, M., 10.1007/BF02614394, Math. Program. 76 (1997), 469-491. (1997) Zbl0872.90102MR1433967DOI10.1007/BF02614394
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.