Global convergence property of modified Levenberg-Marquardt methods for nonsmooth equations

Shou-qiang Du; Yan Gao

Applications of Mathematics (2011)

  • Volume: 56, Issue: 5, page 481-498
  • ISSN: 0862-7940

Abstract

top
In this paper, we discuss the globalization of some kind of modified Levenberg-Marquardt methods for nonsmooth equations and their applications to nonlinear complementarity problems. In these modified Levenberg-Marquardt methods, only an approximate solution of a linear system at each iteration is required. Under some mild assumptions, the global convergence is shown. Finally, numerical results show that the present methods are promising.

How to cite

top

Du, Shou-qiang, and Gao, Yan. "Global convergence property of modified Levenberg-Marquardt methods for nonsmooth equations." Applications of Mathematics 56.5 (2011): 481-498. <http://eudml.org/doc/197232>.

@article{Du2011,
abstract = {In this paper, we discuss the globalization of some kind of modified Levenberg-Marquardt methods for nonsmooth equations and their applications to nonlinear complementarity problems. In these modified Levenberg-Marquardt methods, only an approximate solution of a linear system at each iteration is required. Under some mild assumptions, the global convergence is shown. Finally, numerical results show that the present methods are promising.},
author = {Du, Shou-qiang, Gao, Yan},
journal = {Applications of Mathematics},
keywords = {nonsmooth equations; modified Levenberg-Marquardt method; global convergence; nonlinear complementarity problem; numerical results; nonsmooth equation; modified Levenberg-Marquardt method; global convergence; nonlinear complementarity problem; numerical results},
language = {eng},
number = {5},
pages = {481-498},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global convergence property of modified Levenberg-Marquardt methods for nonsmooth equations},
url = {http://eudml.org/doc/197232},
volume = {56},
year = {2011},
}

TY - JOUR
AU - Du, Shou-qiang
AU - Gao, Yan
TI - Global convergence property of modified Levenberg-Marquardt methods for nonsmooth equations
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 5
SP - 481
EP - 498
AB - In this paper, we discuss the globalization of some kind of modified Levenberg-Marquardt methods for nonsmooth equations and their applications to nonlinear complementarity problems. In these modified Levenberg-Marquardt methods, only an approximate solution of a linear system at each iteration is required. Under some mild assumptions, the global convergence is shown. Finally, numerical results show that the present methods are promising.
LA - eng
KW - nonsmooth equations; modified Levenberg-Marquardt method; global convergence; nonlinear complementarity problem; numerical results; nonsmooth equation; modified Levenberg-Marquardt method; global convergence; nonlinear complementarity problem; numerical results
UR - http://eudml.org/doc/197232
ER -

References

top
  1. Bertsekas, D. P., Constrained Optimization and Lagrange Multiplier Methods, Academic Press New York (1982). (1982) Zbl0572.90067MR0690767
  2. Chen, X., Qi, L., 10.1007/BF01300972, Comput. Optim. Appl. 3 (1994), 157-179. (1994) Zbl0821.65029MR1273659DOI10.1007/BF01300972
  3. Cottle, R. W., Pang, J.-S., Stone, R. E., The Linear Complementarity Problem, Academic Press Boston (1992). (1992) Zbl0757.90078MR1150683
  4. Du, S.-Q., Gao, Y., A modified Levenberg-Marquardt method for nonsmooth equations with finitely many maximum functions, Math. Prob. Eng. (2008). (2008) Zbl1288.49011MR2476501
  5. Fischer, A., 10.1080/02331939208843795, Optim. 24 (1992), 269-284. (1992) Zbl0814.65063MR1247636DOI10.1080/02331939208843795
  6. Fischer, A., Jeyakumar, V., Luc, D. T., 10.1023/A:1017580126509, J. Optimization Theory Appl. 110 (2001), 493-513. (2001) Zbl1064.90048MR1854013DOI10.1023/A:1017580126509
  7. Facchinei, F., Kanzow, F., 10.1007/BF02614395, Math. Program. 76 (1997), 493-512. (1997) Zbl0871.90096MR1433968DOI10.1007/BF02614395
  8. Gao, Y., 10.1023/A:1013791923957, Appl. Math. 46 (2001), 215-229. (2001) Zbl1068.65063MR1828306DOI10.1023/A:1013791923957
  9. Geiger, C., Kanzow, C., 10.1007/BF00249054, Comput. Optim. Appl. 5 (1996), 155-173. (1996) Zbl0859.90113MR1373295DOI10.1007/BF00249054
  10. Jiang, H., 10.1007/BF00121662, J. Glob. Optim. 9 (1996), 169-181. (1996) Zbl0868.90122MR1411607DOI10.1007/BF00121662
  11. Moré, J. J., Sorensen, D. C., 10.1137/0904038, SIAM J. Sci. Stat. Comput. 4 (1983), 553-572. (1983) MR0723110DOI10.1137/0904038
  12. Qi, L., Tseng, P., 10.1016/j.na.2006.06.029, Nonlinear Anal. 67 (2007), 773-794. (2007) Zbl1125.26019MR2319208DOI10.1016/j.na.2006.06.029
  13. Qi, L., Sun, J., 10.1007/BF01581275, Math. Program. 58 (1993), 353-367. (1993) Zbl0780.90090MR1216791DOI10.1007/BF01581275
  14. Sun, D., Qi, L., 10.1023/A:1008669226453, Comput. Optim. Appl. 13 (1999), 201-220. (1999) Zbl1040.90544MR1704120DOI10.1023/A:1008669226453
  15. Yamashita, N., Fukushima, M., 10.1007/BF02614394, Math. Program. 76 (1997), 469-491. (1997) Zbl0872.90102MR1433967DOI10.1007/BF02614394

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.