Sets Expressible as Unions of Staircase n -Convex Polygons

Marilyn Breen

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2011)

  • Volume: 50, Issue: 1, page 23-28
  • ISSN: 0231-9721

Abstract

top
Let k and n be fixed, k 1 , n 1 , and let S be a simply connected orthogonal polygon in the plane. For T S , T lies in a staircase n -convex orthogonal polygon P in S if and only if every two points of T see each other via staircase n -paths in S . This leads to a characterization for those sets S expressible as a union of k staircase n -convex polygons P i , 1 i k .

How to cite

top

Breen, Marilyn. "Sets Expressible as Unions of Staircase $n$-Convex Polygons." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 50.1 (2011): 23-28. <http://eudml.org/doc/197243>.

@article{Breen2011,
abstract = {Let $k$ and $n$ be fixed, $k\ge 1$, $n \ge 1$, and let $S$ be a simply connected orthogonal polygon in the plane. For $T \subseteq S, T$ lies in a staircase $n$-convex orthogonal polygon $P$ in $S$ if and only if every two points of $T$ see each other via staircase $n$-paths in $S$. This leads to a characterization for those sets $S$ expressible as a union of $k$ staircase $n$-convex polygons $P_i$, $1 \le i \le k$.},
author = {Breen, Marilyn},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {orthogonal polygons; staircase $n$-convex polygons; orthogonal polygons; staircase -convex polygons},
language = {eng},
number = {1},
pages = {23-28},
publisher = {Palacký University Olomouc},
title = {Sets Expressible as Unions of Staircase $n$-Convex Polygons},
url = {http://eudml.org/doc/197243},
volume = {50},
year = {2011},
}

TY - JOUR
AU - Breen, Marilyn
TI - Sets Expressible as Unions of Staircase $n$-Convex Polygons
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2011
PB - Palacký University Olomouc
VL - 50
IS - 1
SP - 23
EP - 28
AB - Let $k$ and $n$ be fixed, $k\ge 1$, $n \ge 1$, and let $S$ be a simply connected orthogonal polygon in the plane. For $T \subseteq S, T$ lies in a staircase $n$-convex orthogonal polygon $P$ in $S$ if and only if every two points of $T$ see each other via staircase $n$-paths in $S$. This leads to a characterization for those sets $S$ expressible as a union of $k$ staircase $n$-convex polygons $P_i$, $1 \le i \le k$.
LA - eng
KW - orthogonal polygons; staircase $n$-convex polygons; orthogonal polygons; staircase -convex polygons
UR - http://eudml.org/doc/197243
ER -

References

top
  1. Breen, M., A Helly theorem for intersections of sets starshaped via staircase n -paths, Ars Combinatoria 78 (2006), 47–63. (2006) Zbl1157.52303MR2194749
  2. Breen, M., 10.1007/s00605-005-0345-9, Monatsh. Math. 148 (2006), 91–100. (2006) Zbl1134.52007MR2235357DOI10.1007/s00605-005-0345-9
  3. Breen, M., 10.1007/BF01189893, Arch. Math. 63 (1994), 182–190. (1994) Zbl0742.52006MR1289301DOI10.1007/BF01189893
  4. Breen, M., 10.1007/BF01264043, . Geometriae Dedicata 53 (1994), 49–56. (1994) Zbl0814.52002MR1299884DOI10.1007/BF01264043
  5. Danzer, L., Grünbaum, B., Klee, V., 10.1090/pspum/007/0157289, In: Convexity, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI 7 (1962), 101–180. (1962) MR0157289DOI10.1090/pspum/007/0157289
  6. Eckhoff, J., Helly, Radon, and Carathéodory type theorems, In: Gruber, P. M., Wills, J. M., (eds.) Handbook of Convex Geometry, vol. A, North Holland, New York (1993), 389–448. (1993) Zbl0791.52009MR1242986
  7. Hare, W. R., Jr., Kenelly, J. W., 10.1090/S0002-9939-1970-0257879-7, Proc. Amer. Math. Soc. 25 (1970), 379–380. (1970) Zbl0195.51603MR0257879DOI10.1090/S0002-9939-1970-0257879-7
  8. Lawrence, J. F., Hare, W. R., Jr., Kenelly, J. W., 10.1090/S0002-9939-1972-0291952-4, Proc. Amer. Math. Soc. 34 (1972), 225–228. (1972) Zbl0237.52001MR0291952DOI10.1090/S0002-9939-1972-0291952-4
  9. Lay, S. R., Convex Sets and Their Applications, John Wiley, New York, 1982. (1982) Zbl0492.52001MR0655598
  10. McKinney, R. L., 10.4153/CJM-1966-088-7, Canad. J. Math 18 (1966), 883–886. (1966) Zbl0173.15305MR0202049DOI10.4153/CJM-1966-088-7
  11. Motwani, R., Raghunathan, A., Saran, H., 10.1016/0022-0000(90)90017-F, J. Comput. Syst. Sci. 40 (1990), 19–48. (1990) Zbl0705.68082MR1047288DOI10.1016/0022-0000(90)90017-F
  12. Valentine, F. A., Convex Sets, McGraw-Hill, New York, 1964. (1964) Zbl0129.37203MR0170264

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.