The mathematics of musical instruments

Rachel W. Hall; Krešimir Josić

Pokroky matematiky, fyziky a astronomie (2002)

  • Volume: 47, Issue: 1, page 37-49
  • ISSN: 0032-2423

How to cite

top

Hall, Rachel W., and Josić, Krešimir. "Matematika hudebních nástrojů." Pokroky matematiky, fyziky a astronomie 47.1 (2002): 37-49. <http://eudml.org/doc/197244>.

@article{Hall2002,
author = {Hall, Rachel W., Josić, Krešimir},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {tuning; harmony; frequency; acoustics; wave equation; partial differential equations; continued fractions},
language = {cze},
number = {1},
pages = {37-49},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {Matematika hudebních nástrojů},
url = {http://eudml.org/doc/197244},
volume = {47},
year = {2002},
}

TY - JOUR
AU - Hall, Rachel W.
AU - Josić, Krešimir
TI - Matematika hudebních nástrojů
JO - Pokroky matematiky, fyziky a astronomie
PY - 2002
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 47
IS - 1
SP - 37
EP - 49
LA - cze
KW - tuning; harmony; frequency; acoustics; wave equation; partial differential equations; continued fractions
UR - http://eudml.org/doc/197244
ER -

References

top
  1. Arnol’d, V. I., Geometrical methods in the theory of ordinary differential equations, ( ed.). Springer-Verlag, New York 1988. Z ruštiny přeložil József M. Szücs. (1988) MR0947141
  2. Barbour, J. M., Music and ternary continued fractions, Amer. Math. Monthly 55 (1948), 545–555. (1948) MR0027293
  3. Barbour, J. M., Tuning and Temperament, Michigan State College Press, East Lansing 1953. (1953) 
  4. Barbour, J. M., A geometrical approximation to the roots of numbers, Amer. Math. Monthly 64 (1957), 1–9. (1957) Zbl0078.13204MR0086098
  5. Benson, D., Mathematics and Music, V tisku, dosažitelné na ftp://byrd.math.uga.edu/pub/html/index.html (2000). (2000) 
  6. Blackwood, E., Microtonal Etudes, Cedille Records. CDR 90000 018. 
  7. Boyce, W. E., DiPrima, R. C., Elementary Differential Equations and Boundary Value Problems, ( ed.). John Wiley  Sons, Inc., New York 1986. (1986) Zbl0652.34001MR0179403
  8. Brimi, H., “Willow Dance, 1994,” in The Sweet Sunny North, Shanachie Records64057. 
  9. Chapman, S. J., Drums that sound the same, Amer. Math. Monthly 102 (1955), 124–138. (1955) Zbl0849.35084MR1315592
  10. Ctuistian, R. S., Davis, R. E., Tubis, A., Anderson, C. A., Mills, R. I., Rossing, T. D., Effect of Air Loading on Timpani Membrane Vibrations, J. Acoust. Soc. Am. 76 (1984), 1336–1345. (1984) 
  11. Devaney, R. L., An introduction to chaotic dynamical systems, ( ed.). AddisonW̄esley Publishing Company Advanced Book Program, Redwood City, CA 1989. (1989) Zbl0695.58002MR1046376
  12. Fletcher, N. H., Rossing, T. D., The physics of musical instruments, ( ed.). Springer-Verlag, New York 1998. (1998) Zbl0898.00008MR1675659
  13. Gordon, C., Webb, D. L., Wolpert, S., One cannot hear the shape of a drum, Bull. Amer. Math. Soc. 27 (1992), 134–138. (1992) Zbl0756.58049MR1136137
  14. Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, ( ed.). Oxford University Press, Oxford 1980. (1980) 
  15. Helmholtz, H. v., On thc sensations of tone as a physiological basis for the theory of music, Dover Publications, New York 1954. Originally published 1870, English translation by A. J. Ellis, 1875. (1954) 
  16. Jorgensen, O., Tuning, Michigan State University Press, East Lansing 1991. (1991) 
  17. Kac, M., Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), 1–23. (1966) Zbl0139.05603MR0201237
  18. Kent, J. T., Ternary continued fractions and the evenly-tempeted musical scale, CWI Newsletter 13 (1986), 21–33. (1986) Zbl0625.10006MR0898086
  19. Mersenne, M., Harmonie universelle, contenant la théorie et la pratique de la musique, Centre national de la recherche stientifique, Paris, facsimile edition 1963. Původně vydáno v r. 1636. (1963) 
  20. Pinsky, M. A., Partial differential equations and boundary value problems with applications, (2 ed.). McGraw-Hill Inc., New York 1991. (1991) MR1233559
  21. Rayleigh, J. W. S., The theory of sound, ( ed.). Dover Books, New York 1945. Původně vydáno v r. 1877. (1945) Zbl0061.45904MR0016009
  22. Rossing, T. D., Acoustics of Percussion Instruments—part i, Phys. Teach. 14 (1976) 546–556. (1976) 
  23. Rossing, T. D., Acoustics of Percussion Instruments—part ii, Phys. Teach. 15 (1977), 278–288. (1977) 
  24. Rossing, T. D., The science of sound, ( ed.) Addison-Wesley, New York 1990. (1990) 
  25. Sethares, W. A., Tuning, timbre, spectrum, scale, Springer-Verlag, New York 1999. (1999) 
  26. Varberg, D. E., Pick’s theorem revisited, Amer. Math. Monthly 92 (1985) 584–587. (1985) Zbl0578.52012MR0812105

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.