Existence and non-existence of sign-changing solutions for a class of two-point boundary value problems involving one-dimensional p -Laplacian

Yūki Naito

Mathematica Bohemica (2011)

  • Volume: 136, Issue: 2, page 175-184
  • ISSN: 0862-7959

Abstract

top
We consider the boundary value problem involving the one dimensional p -Laplacian, and establish the precise intervals of the parameter for the existence and non-existence of solutions with prescribed numbers of zeros. Our argument is based on the shooting method together with the qualitative theory for half-linear differential equations.

How to cite

top

Naito, Yūki. "Existence and non-existence of sign-changing solutions for a class of two-point boundary value problems involving one-dimensional $p$-Laplacian." Mathematica Bohemica 136.2 (2011): 175-184. <http://eudml.org/doc/197253>.

@article{Naito2011,
abstract = {We consider the boundary value problem involving the one dimensional $p$-Laplacian, and establish the precise intervals of the parameter for the existence and non-existence of solutions with prescribed numbers of zeros. Our argument is based on the shooting method together with the qualitative theory for half-linear differential equations.},
author = {Naito, Yūki},
journal = {Mathematica Bohemica},
keywords = {boundary value problem; half-linear differential equation; Sturm comparison theorem; half-linear Prüfer transformation; boundary value problem; half-linear differential equation; Sturm comparison theorem; half-linear Prüfer transformation},
language = {eng},
number = {2},
pages = {175-184},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence and non-existence of sign-changing solutions for a class of two-point boundary value problems involving one-dimensional $p$-Laplacian},
url = {http://eudml.org/doc/197253},
volume = {136},
year = {2011},
}

TY - JOUR
AU - Naito, Yūki
TI - Existence and non-existence of sign-changing solutions for a class of two-point boundary value problems involving one-dimensional $p$-Laplacian
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 2
SP - 175
EP - 184
AB - We consider the boundary value problem involving the one dimensional $p$-Laplacian, and establish the precise intervals of the parameter for the existence and non-existence of solutions with prescribed numbers of zeros. Our argument is based on the shooting method together with the qualitative theory for half-linear differential equations.
LA - eng
KW - boundary value problem; half-linear differential equation; Sturm comparison theorem; half-linear Prüfer transformation; boundary value problem; half-linear differential equation; Sturm comparison theorem; half-linear Prüfer transformation
UR - http://eudml.org/doc/197253
ER -

References

top
  1. Agarwal, R. P., Lü, H., O'Regan, D., 10.1006/jmaa.2001.7742, J. Math. Anal. Appl. 266 (2002), 383-400. (2002) Zbl1002.34019MR1880513DOI10.1006/jmaa.2001.7742
  2. Pino, M. del, Elgueta, M., Manasevich, R., 10.1016/0022-0396(89)90093-4, J. Differential Equations 80 (1989), 1-13. (1989) MR1003248DOI10.1016/0022-0396(89)90093-4
  3. Došlý, O., Half-linear differential equations, Handbook of Differential Equations, Volume 1: Ordinary Differential Equations. Vol. 1, 161-358, North-Holland, Amsterdam, Elsevier (2004). (2004) Zbl1090.34027MR2166491
  4. Došlý, O., Řehák, P., Half-Linear Differential Equations, North-Holland, Amsterdam, Elsevier (2005). (2005) Zbl1090.34001MR2158903
  5. Elbert, Á., A half-linear second order differential equation. Qualitative theory of differential equations, Colloq. Math. Soc. János Bolyai. 30 (1981), 153-180. (1981) MR0680591
  6. Hai, D. D., Schmitt, K., Shivaji, R., 10.1006/jmaa.1997.5762, J. Math. Anal. Appl. 217 (1998), 672-686. (1998) Zbl0893.34017MR1492111DOI10.1006/jmaa.1997.5762
  7. He, X., Ge, W., 10.1016/j.na.2003.07.022, Nonlinear Anal. 56 (2004), 975-984. (2004) Zbl1061.34013MR2038732DOI10.1016/j.na.2003.07.022
  8. Kusano, T., Naito, M., 10.1216/rmjm/1020171678, Rocky Mountain J. Math. 31 (2001), 1039-1054. (2001) Zbl1006.34025MR1877333DOI10.1216/rmjm/1020171678
  9. Kong, L., Wang, J., 10.1016/S0362-546X(99)00143-1, Nonlinear Anal. 42 (2000), 1327-1333. (2000) Zbl0961.34012MR1784078DOI10.1016/S0362-546X(99)00143-1
  10. Li, H. J., Yeh, C. C., Sturmian comparison theorem for half-linear second-order differential equations, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 1193-1204. (1995) Zbl0873.34020MR1362999
  11. Manasevich, R., Zanolin, F., Time-mappings and multiplicity of solutions for the one-dimensional p -Laplacian, Nonlinear Anal. 21 (1993), 269-291. (1993) Zbl0792.34021MR1237587
  12. Naito, Y., Tanaka, S., 10.1016/j.na.2007.09.002, Nonlinear Anal., Theory Methods Appl. 69 (2008), 3070-3083. (2008) Zbl1157.34010MR2452116DOI10.1016/j.na.2007.09.002
  13. Sánchez, J., 10.1016/j.jmaa.2003.12.005, J. Math. Anal. Appl. 292 (2004), 401-414. (2004) Zbl1057.34012MR2047620DOI10.1016/j.jmaa.2003.12.005
  14. Wang, J., 10.1090/S0002-9939-97-04148-8, Proc. Amer. Math. Soc. 125 (1997), 2275-2283. (1997) Zbl0884.34032MR1423340DOI10.1090/S0002-9939-97-04148-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.