Existence and non-existence of sign-changing solutions for a class of two-point boundary value problems involving one-dimensional -Laplacian
Mathematica Bohemica (2011)
- Volume: 136, Issue: 2, page 175-184
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topNaito, Yūki. "Existence and non-existence of sign-changing solutions for a class of two-point boundary value problems involving one-dimensional $p$-Laplacian." Mathematica Bohemica 136.2 (2011): 175-184. <http://eudml.org/doc/197253>.
@article{Naito2011,
abstract = {We consider the boundary value problem involving the one dimensional $p$-Laplacian, and establish the precise intervals of the parameter for the existence and non-existence of solutions with prescribed numbers of zeros. Our argument is based on the shooting method together with the qualitative theory for half-linear differential equations.},
author = {Naito, Yūki},
journal = {Mathematica Bohemica},
keywords = {boundary value problem; half-linear differential equation; Sturm comparison theorem; half-linear Prüfer transformation; boundary value problem; half-linear differential equation; Sturm comparison theorem; half-linear Prüfer transformation},
language = {eng},
number = {2},
pages = {175-184},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence and non-existence of sign-changing solutions for a class of two-point boundary value problems involving one-dimensional $p$-Laplacian},
url = {http://eudml.org/doc/197253},
volume = {136},
year = {2011},
}
TY - JOUR
AU - Naito, Yūki
TI - Existence and non-existence of sign-changing solutions for a class of two-point boundary value problems involving one-dimensional $p$-Laplacian
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 2
SP - 175
EP - 184
AB - We consider the boundary value problem involving the one dimensional $p$-Laplacian, and establish the precise intervals of the parameter for the existence and non-existence of solutions with prescribed numbers of zeros. Our argument is based on the shooting method together with the qualitative theory for half-linear differential equations.
LA - eng
KW - boundary value problem; half-linear differential equation; Sturm comparison theorem; half-linear Prüfer transformation; boundary value problem; half-linear differential equation; Sturm comparison theorem; half-linear Prüfer transformation
UR - http://eudml.org/doc/197253
ER -
References
top- Agarwal, R. P., Lü, H., O'Regan, D., 10.1006/jmaa.2001.7742, J. Math. Anal. Appl. 266 (2002), 383-400. (2002) Zbl1002.34019MR1880513DOI10.1006/jmaa.2001.7742
- Pino, M. del, Elgueta, M., Manasevich, R., 10.1016/0022-0396(89)90093-4, J. Differential Equations 80 (1989), 1-13. (1989) MR1003248DOI10.1016/0022-0396(89)90093-4
- Došlý, O., Half-linear differential equations, Handbook of Differential Equations, Volume 1: Ordinary Differential Equations. Vol. 1, 161-358, North-Holland, Amsterdam, Elsevier (2004). (2004) Zbl1090.34027MR2166491
- Došlý, O., Řehák, P., Half-Linear Differential Equations, North-Holland, Amsterdam, Elsevier (2005). (2005) Zbl1090.34001MR2158903
- Elbert, Á., A half-linear second order differential equation. Qualitative theory of differential equations, Colloq. Math. Soc. János Bolyai. 30 (1981), 153-180. (1981) MR0680591
- Hai, D. D., Schmitt, K., Shivaji, R., 10.1006/jmaa.1997.5762, J. Math. Anal. Appl. 217 (1998), 672-686. (1998) Zbl0893.34017MR1492111DOI10.1006/jmaa.1997.5762
- He, X., Ge, W., 10.1016/j.na.2003.07.022, Nonlinear Anal. 56 (2004), 975-984. (2004) Zbl1061.34013MR2038732DOI10.1016/j.na.2003.07.022
- Kusano, T., Naito, M., 10.1216/rmjm/1020171678, Rocky Mountain J. Math. 31 (2001), 1039-1054. (2001) Zbl1006.34025MR1877333DOI10.1216/rmjm/1020171678
- Kong, L., Wang, J., 10.1016/S0362-546X(99)00143-1, Nonlinear Anal. 42 (2000), 1327-1333. (2000) Zbl0961.34012MR1784078DOI10.1016/S0362-546X(99)00143-1
- Li, H. J., Yeh, C. C., Sturmian comparison theorem for half-linear second-order differential equations, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 1193-1204. (1995) Zbl0873.34020MR1362999
- Manasevich, R., Zanolin, F., Time-mappings and multiplicity of solutions for the one-dimensional -Laplacian, Nonlinear Anal. 21 (1993), 269-291. (1993) Zbl0792.34021MR1237587
- Naito, Y., Tanaka, S., 10.1016/j.na.2007.09.002, Nonlinear Anal., Theory Methods Appl. 69 (2008), 3070-3083. (2008) Zbl1157.34010MR2452116DOI10.1016/j.na.2007.09.002
- Sánchez, J., 10.1016/j.jmaa.2003.12.005, J. Math. Anal. Appl. 292 (2004), 401-414. (2004) Zbl1057.34012MR2047620DOI10.1016/j.jmaa.2003.12.005
- Wang, J., 10.1090/S0002-9939-97-04148-8, Proc. Amer. Math. Soc. 125 (1997), 2275-2283. (1997) Zbl0884.34032MR1423340DOI10.1090/S0002-9939-97-04148-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.