Controllability of a slowly rotating Timoshenko beam
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 6, page 333-360
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- S.A. Avdonin and S.S. Ivanov, Families of Exponentials. Cambridge University Press (1995).
- M.C. Delfour, M. Kern, L. Passeron and B. Sevenne, Modelling of a rotating flexible beam, in Control of Distributed Parameter Systems, edited by H.E. Rauch. Pergamon Press, Los Angeles (1986) 383-387.
- K.F. Graff, Wave Motion in Elastic Solids. Dover Publications, New York (1991).
- M. Gugat, A Newton method for the computation of time-optimal boundary controls of one-dimensional vibrating systems. J. Comput. Appl. Math.114 (2000) 103-119.
- J.U. Kim and Y. Renardy, Boundary control of the Timoshenko beam. SIAM J. Control Optim.25 (1987) 1417-1429.
- W. Krabs, On moment theory and contollability of one-dimensional vibrating systems and heating processes. Springer-Verlag, Heidelberg, Lecture Notes in Control and Informat. Sci.173 (1992).
- W. Krabs, Controllability of a rotating beam. Springer-Verlag, Lecture Notes in Control and Inform. Sci.185 (1993) 447-458.
- W. Krabs and G.M. Sklyar, On the controllability of a slowly rotating Timoshenko beam. J. Anal. Appl.18 (1999) 437-448.
- M.A. Moreles, A classical approach to uniform null controllability of elastic beams. SIAM J. Control Optim.36 (1998) 1073-1085.
- D.L. Russel, Nonharmonic Fourier series in the control theory of distributed parameter systems. J. Math. Anal. Appl.18 (1967) 542-560.
- M.A. Shubov, Spectral operators generated by Timoshenko beam model. Systems Control Lett.38 (1999).
- S.P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. (1921) xli.