Control Norms for Large Control Times
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 4, page 405-418
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Asch and G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation - a numerical study. ESAIM: Contr., Optim. Cal. Var.3 (1998) 163-212.
- S. Avdonin and S. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, N.Y. (1995).
- S.A. Avdonin, M.I. Belishev and S.A. Ivanov, Controllability in filled domain for the multidimensional wave equation with singular boundary control. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)210 (1994) 7-21.
- S.A. Avdonin, S.A. Ivanov and D.L. Russell, Exponential bases in Sobolev spaces in control and observation problems for the wave equation. Proc. Roy. Soc. Edinburgh (to be submitted).
- C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Theor. Appl.30 (1992) 1024-1095.
- H.O. Fattorini, Estimates for sequences biorthogonal to certain complex exponentials and boundary control of the wave equation, Springer, Lecture Notes in Control and Information Sciences2 (1979).
- R. Glowinski, C.-H. Li and J.-L. Lions, A numerical approach to the exact controllability of the wave equation. (I) Dirichlet controls: description of the numerical methods. Japan J. Appl. Math.7 (1990) 1-76.
- F. Gozzi and P. Loreti, Regularity of the minimum time function and minimum energy problems: the linear case. SIAM J. Control Optim. (to appear).
- W. Krabs, On Moment Theory and Controllability of one-dimensional vibrating Systems and Heating Processes, Springer, Lecture Notes in Control and Information Sciences173 (1992).
- W. Krabs, G. Leugering and T. Seidman, On boundary controllability of a vibrating plate. Appl. Math. Optim.13 (1985) 205-229.
- I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators. J. Math. Pures Appl.65 (1986) 149-192.
- J.-L. Lions, Contrôlabilité exacte, stabilisation et perturbation des systèmes distribués, Masson, Paris Collection RMA1 (1988).
- N.K. Nikol'skii, A Treatise on the Shift Operator, Springer, Berlin (1986).
- D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions. SIAM Rev.20 (1978) 639-739.
- T.I. Seidman, The coefficient map for certain exponential sums. Nederl. Akad. Wetensch. Proc. Ser. A89 (= Indag. Math. 48) (1986) 463-468.
- T.I. Seidman, S.A. Avdonin and S.A. Ivanov, The ``window problem'' for complex exponentials. Fourier Analysis and Applications (to appear).
- D. Tataru, Unique continuation for solutions of PDE's; between Hörmander's theorem and Holmgren's theorem. Comm. PDE20 (1995) 855-884.