Local small time controllability and attainability of a set for nonlinear control system
Mikhail Krastanov; Marc Quincampoix
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 6, page 499-516
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topKrastanov, Mikhail, and Quincampoix, Marc. "Local small time controllability and attainability of a set for nonlinear control system." ESAIM: Control, Optimisation and Calculus of Variations 6 (2010): 499-516. <http://eudml.org/doc/197313>.
@article{Krastanov2010,
abstract = {
In the present paper, we study the problem of small-time
local attainability (STLA) of a closed set.
For doing this, we introduce a new concept of variations of the
reachable set well adapted to a given closed set and prove a new
attainability result
for a general dynamical system. This provide our main result for nonlinear
control systems. Some applications to linear and polynomial systems are
discussed and STLA necessary and sufficient conditions are obtained
when the considered set is a hyperplane.
},
author = {Krastanov, Mikhail, Quincampoix, Marc},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Attainability; controlability; local variations; polynomial control; linear controls.; attainability; controllability; linear controls},
language = {eng},
month = {3},
pages = {499-516},
publisher = {EDP Sciences},
title = {Local small time controllability and attainability of a set for nonlinear control system},
url = {http://eudml.org/doc/197313},
volume = {6},
year = {2010},
}
TY - JOUR
AU - Krastanov, Mikhail
AU - Quincampoix, Marc
TI - Local small time controllability and attainability of a set for nonlinear control system
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 6
SP - 499
EP - 516
AB -
In the present paper, we study the problem of small-time
local attainability (STLA) of a closed set.
For doing this, we introduce a new concept of variations of the
reachable set well adapted to a given closed set and prove a new
attainability result
for a general dynamical system. This provide our main result for nonlinear
control systems. Some applications to linear and polynomial systems are
discussed and STLA necessary and sufficient conditions are obtained
when the considered set is a hyperplane.
LA - eng
KW - Attainability; controlability; local variations; polynomial control; linear controls.; attainability; controllability; linear controls
UR - http://eudml.org/doc/197313
ER -
References
top- A. Agrachev and R. Gamkrelidze, The exponential representation of flows and the chronological calculus. Math. USSR Sbornik35 (1978) 727-785.
- A. Bacciotti and G. Stefani, Self-accessibility of a set with respect to a multivalued field. JOTA31 (1980) 535-552.
- R. Bianchini and G. Stefani, Time optimal problem and time optimal map. Rend. Sem. Mat. Univ. Politec. Torino48 (1990) 401-429.
- J.M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble)19 (1969) 277-304.
- P. Brunovsky, Local controllability of odd systems. Banach Center Publications,Warsaw, Poland 1 (1974) 39-45.
- P. Cardaliaguet, M. Quincampoix and P. Saint Pierre, Minimal time for constrained nonlinear control problems without controllability. Appl. Math. Optim.36 (1997) 21-42.
- K. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math.65 (1957) 163-178.
- F.H. Clarke and P.R. Wolenski, Control of systems to sets and their interiors. JOTA88 (1996) 3-23.
- M. Fliess, Fonctionnelles causales nonlinéaires et indéterminées non commutatives. Bull. Soc. Math. France109 (1981) 3-40.
- H. Frankowska, Local controllability of control systems with feedback. JOTA60 (1989) 277-296.
- H. Hermes, Lie algebras of vector fields and local approximation of attainable sets. SIAM J. Control Optim.16 (1978) 715-727.
- R. Hirshorn, Strong controllability of nonlinear systems. SIAM J. Control Optim.16 (1989) 264-275.
- V. Jurdjevic and I. Kupka, Polynomial Control Systems. Math. Ann.272 (1985) 361-368.
- A. Krener, The high order maximal principle and its applications to singular extremals. SIAM J. Control Optim.15 (1977) 256-293.
- H. Kunita, On the controllability of nonlinear systems with application to polynomial systems. Appl. Math. Optim.5 (1979) 89-99.
- G. Lebourg, Valeur moyenne pour gradient généralisé. C. R. Acad. Sci. Paris Sér. I Math.281 (1975) 795-797.
- P. Soravia, Hölder Continuity of the Minimum-Time Function for C1-Manifold Targets. JOTA75 (1992) 2.
- H. Sussmann, A sufficient condition for local controllability. SIAM J. Control Optim.16 (1978) 790-802.
- H. Sussmann, Lie brackets and local controllability - A sufficient condition for scalar-input control systems. SIAM J. Control Optim.21 (1983) 683-713.
- H. Sussmann, A general theorem on local controllability. SIAM J. Control Optim.25 (1987) 158-194.
- V. Veliov, On the controllability of control constrained systems. Mathematica Balkanica (N.S.)2 (1988) 2-3, 147-155.
- V. Veliov and M. Krastanov, Controllability of piece-wise linear systems. Systems Control Lett.7 (1986) 335-341.
- V. Veliov, Attractiveness and invariance: The case of uncertain measurement, edited by Kurzhanski and Veliov, Modeling Techniques for uncertain Systems. PSCT 18, Birkhauser (1994).
- V. Veliov, On the Lipschitz continuity of the value function in optimal control. J. Optim. Theory Appl.94 (1997) 335-361.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.