Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems

ludovic faubourg; jean-baptiste pomet

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 5, page 293-311
  • ISSN: 1292-8119

Abstract

top
This paper presents a method to design explicit control Lyapunov functions for affine and homogeneous systems that satisfy the so-called “Jurdjevic-Quinn conditions”. For these systems a positive definite function V0 is known that can only be made non increasing by feedback. We describe how a control Lyapunov function can be obtained via a deformation of this “weak” Lyapunov function. Some examples are presented, and the linear quadratic situation is treated as an illustration.

How to cite

top

ludovic faubourg, and jean-baptiste pomet. "Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems." ESAIM: Control, Optimisation and Calculus of Variations 5 (2010): 293-311. <http://eudml.org/doc/197316>.

@article{ludovicfaubourg2010,
abstract = { This paper presents a method to design explicit control Lyapunov functions for affine and homogeneous systems that satisfy the so-called “Jurdjevic-Quinn conditions”. For these systems a positive definite function V0 is known that can only be made non increasing by feedback. We describe how a control Lyapunov function can be obtained via a deformation of this “weak” Lyapunov function. Some examples are presented, and the linear quadratic situation is treated as an illustration. },
author = {ludovic faubourg, jean-baptiste pomet},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Feedback stabilization; control Lyapunov function; Lyapunov design.; feedback stabilization; control Lyapunov functions; Lyapunov design},
language = {eng},
month = {3},
pages = {293-311},
publisher = {EDP Sciences},
title = {Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems},
url = {http://eudml.org/doc/197316},
volume = {5},
year = {2010},
}

TY - JOUR
AU - ludovic faubourg
AU - jean-baptiste pomet
TI - Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 5
SP - 293
EP - 311
AB - This paper presents a method to design explicit control Lyapunov functions for affine and homogeneous systems that satisfy the so-called “Jurdjevic-Quinn conditions”. For these systems a positive definite function V0 is known that can only be made non increasing by feedback. We describe how a control Lyapunov function can be obtained via a deformation of this “weak” Lyapunov function. Some examples are presented, and the linear quadratic situation is treated as an illustration.
LA - eng
KW - Feedback stabilization; control Lyapunov function; Lyapunov design.; feedback stabilization; control Lyapunov functions; Lyapunov design
UR - http://eudml.org/doc/197316
ER -

References

top
  1. D. Aeyels, Stabilization of a class of nonlinear systems by smooth feedback control. Systems Control Lett.5 (1985) 289-294.  
  2. Z. Artstein, Stabilization with relaxed control. Nonlinear Anal. TMA7 (1983) 1163-1173.  
  3. A. Bacciotti, Local stabilizability of nonlinear control systems. World Scientific, Singapore, River Edge, London, Ser. Adv. Math. Appl. Sci. 8 (1992).  
  4. R.W. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory, edited by R.W. Brockett, R.S. Millman and H.J. Sussmann. Basel-Boston, Birkäuser (1983) 181-191.  
  5. R.T. Bupp, D.S. Bernstein and V.T. Coppola, A benchmark problem for nonlinear control design. Internat J. Robust Nonlinear Control8 (1998) 307-310.  
  6. height 2pt depth -1.6pt width 23pt, Experimental implementation of integrator back-stepping and passive nonlinear controllers on the RTAC testbed. Internat J. Robust Nonlinear Control8 (1998) 435-457.  
  7. J.-M. Coron, L. Praly and A.R. Teel, Feedback stabilization of nonlinear system: Sufficient conditions and lyapunov and input-output techniques, in Trends in Control, a European Perspective, edited by A. Isidori. Springer-Verlag (1995) 283-348.  
  8. L. Faubourg, La déformation de fonctions de Lyapunov, Rapport de DEA d'automatique et informatique industrielle. INRIA-Université de Lille 1 (1997).  
  9. L. Faubourg and J.-B. Pomet, Strict control Lyapunov functions for homogeneous Jurdjevic-Quinn type systems, in Nonlinear Control Systems Design Symposium (NOLCOS'98), edited by H. Huijberts, H. Nijmeijer, A. van der Schaft and J. Scherpen. IFAC (1998) 823-829.  
  10. L. Faubourg and J.-B. Pomet, Design of control Lyapunov functions for ``Jurdjevic-Quinn'' systems, in Stability and Stabilization of Nonlinear Systems, edited by D. Aeyels et al. Springer-Verlag, Lecture Notes in Contr. & Inform. Sci. (1999) 137-150.  
  11. J.-P. Gauthier, Structure des Systèmes non-linéaires. Éditions du CNRS, Paris (1984).  
  12. W. Hahn, Stability of Motion. Springer-Verlag, Berlin, New-York, Grundlehren Math. Wiss. 138 (1967).  
  13. V. Jurdjevic and J.P. Quinn, Controllability and stability. J. Differential Equations28 (1978) 381-389.  
  14. M. Kawski, Homogeneous stabilizing feedback laws. Control Theory and Adv. Technol.6 (1990), 497-516.  
  15. H.K. Khalil, Nonlinear Systems. MacMillan, New York, Toronto, Singapore (1992).  
  16. J. Kurzweil, On the inversion of Ljapunov's second theorem on stability of motion. AMS Trans., Ser. II24 (1956) 19-77.  
  17. J.-P. LaSalle, Stability theory for ordinary differential equations. J. Differential Equations4 (1968) 57-65.  
  18. W. Liu, Y. Chitour and E. Sontag, Remarks on finite gain stabilizability of linear systems subject to input saturation, in 32 th IEEE Conf. on Decision and Control. San Antonio, USA (1993) 1808-1813.  
  19. F. Mazenc, Stabilisation de trajectoires, ajout d'intégration, commandes saturées, Thèse de doctorat. École des Mines de Paris (1989).  
  20. P. Morin, Robust stabilization of the angular velocity of a rigid body with two actuators. European J. Control2 (1996) 51-56.  
  21. R. Outbib and G. Sallet, Stabilizability of the angular velocity of a rigid body revisited. Systems Control Lett.18 (1992) 93-98.  
  22. G. Sallet, Historique des techniques de Jurdjevic-Quinn (private communication).  
  23. R. Sépulchre, M. Jankovic and P.V. Kokotovic, Constructive Nonlinear Control. Springer-Verlag, Comm. Control Engrg. Ser. (1997).  
  24. E.D. Sontag, Feedback stabilization of nonlinear systems, in Robust control of linear systems and nonlinear control, Vol. 2 of proceedings of MTNS'89, edited by M.A. Kaashoek, J.H. van Schuppen and A. Ran. Basel-Boston, Birkhäuser (1990) 61-81.  
  25. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 1. Publish or Perish, Houston, second Ed. (1979).  
  26. J. Tsinias, Remarks on feedback stabilizability of homogeneous systems. Control Theory and Adv. Technol.6 (1990) 533-542.  
  27. J. Zhao and I. Kanellakopoulos, Flexible back-stepping design for tracking and disturbance attenuation. Internat J. Robust Nonlinear Control8 (1998) 331-348.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.