# Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems

ludovic faubourg; jean-baptiste pomet

ESAIM: Control, Optimisation and Calculus of Variations (2010)

- Volume: 5, page 293-311
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topludovic faubourg, and jean-baptiste pomet. "Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems." ESAIM: Control, Optimisation and Calculus of Variations 5 (2010): 293-311. <http://eudml.org/doc/197316>.

@article{ludovicfaubourg2010,

abstract = {
This paper presents a method to design explicit control Lyapunov functions for affine
and homogeneous systems that satisfy the so-called “Jurdjevic-Quinn conditions”.
For these systems a positive definite function V0 is known that can only be made
non increasing by feedback. We describe how a control Lyapunov function can be
obtained via a deformation of this “weak” Lyapunov function. Some examples are
presented, and the linear quadratic situation is treated as an illustration.
},

author = {ludovic faubourg, jean-baptiste pomet},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Feedback stabilization; control Lyapunov function; Lyapunov design.; feedback stabilization; control Lyapunov functions; Lyapunov design},

language = {eng},

month = {3},

pages = {293-311},

publisher = {EDP Sciences},

title = {Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems},

url = {http://eudml.org/doc/197316},

volume = {5},

year = {2010},

}

TY - JOUR

AU - ludovic faubourg

AU - jean-baptiste pomet

TI - Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2010/3//

PB - EDP Sciences

VL - 5

SP - 293

EP - 311

AB -
This paper presents a method to design explicit control Lyapunov functions for affine
and homogeneous systems that satisfy the so-called “Jurdjevic-Quinn conditions”.
For these systems a positive definite function V0 is known that can only be made
non increasing by feedback. We describe how a control Lyapunov function can be
obtained via a deformation of this “weak” Lyapunov function. Some examples are
presented, and the linear quadratic situation is treated as an illustration.

LA - eng

KW - Feedback stabilization; control Lyapunov function; Lyapunov design.; feedback stabilization; control Lyapunov functions; Lyapunov design

UR - http://eudml.org/doc/197316

ER -

## References

top- D. Aeyels, Stabilization of a class of nonlinear systems by smooth feedback control. Systems Control Lett.5 (1985) 289-294.
- Z. Artstein, Stabilization with relaxed control. Nonlinear Anal. TMA7 (1983) 1163-1173.
- A. Bacciotti, Local stabilizability of nonlinear control systems. World Scientific, Singapore, River Edge, London, Ser. Adv. Math. Appl. Sci. 8 (1992).
- R.W. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory, edited by R.W. Brockett, R.S. Millman and H.J. Sussmann. Basel-Boston, Birkäuser (1983) 181-191.
- R.T. Bupp, D.S. Bernstein and V.T. Coppola, A benchmark problem for nonlinear control design. Internat J. Robust Nonlinear Control8 (1998) 307-310.
- height 2pt depth -1.6pt width 23pt, Experimental implementation of integrator back-stepping and passive nonlinear controllers on the RTAC testbed. Internat J. Robust Nonlinear Control8 (1998) 435-457.
- J.-M. Coron, L. Praly and A.R. Teel, Feedback stabilization of nonlinear system: Sufficient conditions and lyapunov and input-output techniques, in Trends in Control, a European Perspective, edited by A. Isidori. Springer-Verlag (1995) 283-348.
- L. Faubourg, La déformation de fonctions de Lyapunov, Rapport de DEA d'automatique et informatique industrielle. INRIA-Université de Lille 1 (1997).
- L. Faubourg and J.-B. Pomet, Strict control Lyapunov functions for homogeneous Jurdjevic-Quinn type systems, in Nonlinear Control Systems Design Symposium (NOLCOS'98), edited by H. Huijberts, H. Nijmeijer, A. van der Schaft and J. Scherpen. IFAC (1998) 823-829.
- L. Faubourg and J.-B. Pomet, Design of control Lyapunov functions for ``Jurdjevic-Quinn'' systems, in Stability and Stabilization of Nonlinear Systems, edited by D. Aeyels et al. Springer-Verlag, Lecture Notes in Contr. & Inform. Sci. (1999) 137-150.
- J.-P. Gauthier, Structure des Systèmes non-linéaires. Éditions du CNRS, Paris (1984).
- W. Hahn, Stability of Motion. Springer-Verlag, Berlin, New-York, Grundlehren Math. Wiss. 138 (1967).
- V. Jurdjevic and J.P. Quinn, Controllability and stability. J. Differential Equations28 (1978) 381-389.
- M. Kawski, Homogeneous stabilizing feedback laws. Control Theory and Adv. Technol.6 (1990), 497-516.
- H.K. Khalil, Nonlinear Systems. MacMillan, New York, Toronto, Singapore (1992).
- J. Kurzweil, On the inversion of Ljapunov's second theorem on stability of motion. AMS Trans., Ser. II24 (1956) 19-77.
- J.-P. LaSalle, Stability theory for ordinary differential equations. J. Differential Equations4 (1968) 57-65.
- W. Liu, Y. Chitour and E. Sontag, Remarks on finite gain stabilizability of linear systems subject to input saturation, in 32 ${}^{\mathrm{th}}$IEEE Conf. on Decision and Control. San Antonio, USA (1993) 1808-1813.
- F. Mazenc, Stabilisation de trajectoires, ajout d'intégration, commandes saturées, Thèse de doctorat. École des Mines de Paris (1989).
- P. Morin, Robust stabilization of the angular velocity of a rigid body with two actuators. European J. Control2 (1996) 51-56.
- R. Outbib and G. Sallet, Stabilizability of the angular velocity of a rigid body revisited. Systems Control Lett.18 (1992) 93-98.
- G. Sallet, Historique des techniques de Jurdjevic-Quinn (private communication).
- R. Sépulchre, M. Jankovic and P.V. Kokotovic, Constructive Nonlinear Control. Springer-Verlag, Comm. Control Engrg. Ser. (1997).
- E.D. Sontag, Feedback stabilization of nonlinear systems, in Robust control of linear systems and nonlinear control, Vol. 2 of proceedings of MTNS'89, edited by M.A. Kaashoek, J.H. van Schuppen and A. Ran. Basel-Boston, Birkhäuser (1990) 61-81.
- M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 1. Publish or Perish, Houston, second Ed. (1979).
- J. Tsinias, Remarks on feedback stabilizability of homogeneous systems. Control Theory and Adv. Technol.6 (1990) 533-542.
- J. Zhao and I. Kanellakopoulos, Flexible back-stepping design for tracking and disturbance attenuation. Internat J. Robust Nonlinear Control8 (1998) 331-348.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.