Semi-continuité inférieure d'intégrales multiples et d'intégrandes convergentes
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 1, page 169-189
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topLi, Zhiping. "Semi-continuité inférieure d'intégrales multiples et d'intégrandes convergentes." ESAIM: Control, Optimisation and Calculus of Variations 1 (2010): 169-189. <http://eudml.org/doc/197317>.
@article{Li2010,
abstract = {
Lower semicontinuity of multiple integrals ∫Ωƒ(x,uα,Pα)dµ and ∫Ωƒα(x,uα,Pα)dµ are studied. It is proved that the two can derive
from each other under certain general hypotheses such as uniform lower
compactness property and locally uniform convergence of ƒα to ƒ. The
result is applied to obtain some general lower semicontinuity theorems
on multiple integrals with quasiconvex integrand ƒ, while ƒα are not
required to be quasiconvex.
},
author = {Li, Zhiping},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
language = {eng},
month = {3},
pages = {169-189},
publisher = {EDP Sciences},
title = {Semi-continuité inférieure d'intégrales multiples et d'intégrandes convergentes},
url = {http://eudml.org/doc/197317},
volume = {1},
year = {2010},
}
TY - JOUR
AU - Li, Zhiping
TI - Semi-continuité inférieure d'intégrales multiples et d'intégrandes convergentes
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 1
SP - 169
EP - 189
AB -
Lower semicontinuity of multiple integrals ∫Ωƒ(x,uα,Pα)dµ and ∫Ωƒα(x,uα,Pα)dµ are studied. It is proved that the two can derive
from each other under certain general hypotheses such as uniform lower
compactness property and locally uniform convergence of ƒα to ƒ. The
result is applied to obtain some general lower semicontinuity theorems
on multiple integrals with quasiconvex integrand ƒ, while ƒα are not
required to be quasiconvex.
LA - eng
UR - http://eudml.org/doc/197317
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.