Homogenization of a spectral equation with drift in linear transport
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 6, page 613-627
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal.9 (1992) 1482-1518.
- G. Allaire and G. Bal, Homogenization of the criticality spectral equation in neutron transport. ESAIM: M2AN33 (1999) 721-746.
- G. Bal, Couplage d'équations et homogénéisation en transport neutronique, Thèse de Doctorat de l'Université Paris 6 (1997).
- G. Bal, Boundary layer analysis in the homogenization of neutron transport equations in a cubic domain. Asymptot. Anal.20 (1999) 213-239.
- G. Bal, First-order Corrector for the Homogenization of the Criticality Eigenvalue Problem in the Even Parity Formulation of the Neutron Transport. SIAM J. Math. Anal.30 (1999) 1208-1240.
- G. Bal, Diffusion Approximation of Radiative Transfer Equations in a Channel. Transport Theory Statist. Phys. (to appear).
- P. Benoist, Théorie du coefficient de diffusion des neutrons dans un réseau comportant des cavités, Note CEA-R 2278 (1964).
- A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-Holland (1978).
- height 2pt depth -1.6pt width 23pt, Boundary Layers and Homogenization of Transport Processes. RIMS, Kyoto Univ. (1979).
- J. Bergh and L. Löfström, Interpolation spaces. Springer, New York (1976).
- J. Bussac and P. Reuss, Traité de neutronique. Hermann, Paris (1978).
- Y. Capdeboscq, Homogenization of a diffusion equation with drift. C. R. Acad. Sci. Paris Sér. I Math.327 (1998) 807-812.
- height 2pt depth -1.6pt width 23pt, Homogenization of a Neutronic Critical Diffusion Problem with Drift. Proc. Roy Soc. Edinburgh Sect. A (accepted).
- F. Chatelin, Spectral approximation of linear operators. Academic Press, Comp. Sci. Appl. Math. (1983).
- R. Dautray and J.L. Lions, Mathematical analysis and numerical methods for Science and Technology, Vol. 6. Springer Verlag, Berlin (1993).
- V. Deniz, The theory of neutron leakage in reactor lattices, in Handbook of nuclear reactor calculations, Vol. II, edited by Y. Ronen (1968) 409-508.
- J. Garnier, Homogenization in a periodic and time dependent potential. SIAM J. Appl. Math.57 (1997) 95-111.
- F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal.76 (1988) 110-125.
- T. Kato, Perturbation theory for linear operators. Springer Verlag, Berlin (1976).
- M.L. Kleptsyna and A.L. Piatnitski, On large deviation asymptotics for homgenized SDE with a small diffusion. Probab. Theory Appl. (submitted).
- S. Kozlov, Reductibility of quasiperiodic differential operators and averaging. Trans. Moscow Math. Soc.2 (1984) 101-136.
- E.W. Larsen, Neutron transport and diffusion in inhomogeneous media. I. J. Math. Phys.16 (1975) 1421-1427.
- height 2pt depth -1.6pt width 23pt, Neutron transport and diffusion in inhomogeneous media. II. Nuclear Sci. Engrg.60 (1976) 357-368.
- E.W. Larsen and J.B. Keller, Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys.15 (1974) 75-81.
- E.W. Larsen and M. Williams, Neutron Drift in Heterogeneous Media. Nuclear Sci. Engrg.65 (1978) 290-302.
- M. Mokhtar-Kharroubi, Mathematical Topics in Neutron Transport Theory. World Scientific, Singapore (1997).
- J. Planchard, Méthodes mathématiques en neutronique, Collection de la Direction des Études et Recherches d'EDF. Eyrolles (1995).
- L. Ryzhik, G. Papanicolaou and J.B. Keller, Transport equations for elastic and other waves in random media. Wave Motion24 (1996) 327-370.
- R. Sentis, Study of the corrector of the eigenvalue of a transport operator. SIAM J. Math. Anal.16 (1985) 151-166.
- M. Struwe, Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems. Springer, Berlin (1990).