Exact boundary controllability of 3-D Euler equation

Olivier Glass

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 5, page 1-44
  • ISSN: 1292-8119

Abstract

top
We prove the exact boundary controllability of the 3-D Euler equation of incompressible inviscid fluids on a regular connected bounded open set when the control operates on an open part of the boundary that meets any of the connected components of the boundary.

How to cite

top

Glass, Olivier. "Exact boundary controllability of 3-D Euler equation." ESAIM: Control, Optimisation and Calculus of Variations 5 (2010): 1-44. <http://eudml.org/doc/197362>.

@article{Glass2010,
abstract = { We prove the exact boundary controllability of the 3-D Euler equation of incompressible inviscid fluids on a regular connected bounded open set when the control operates on an open part of the boundary that meets any of the connected components of the boundary. },
author = {Glass, Olivier},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Controllability; boundary control; Euler equation for ideal incompressible fluids.; boundary controllability; exact controllability; control of fluid flow; 3-D Euler equation},
language = {eng},
month = {3},
pages = {1-44},
publisher = {EDP Sciences},
title = {Exact boundary controllability of 3-D Euler equation},
url = {http://eudml.org/doc/197362},
volume = {5},
year = {2010},
}

TY - JOUR
AU - Glass, Olivier
TI - Exact boundary controllability of 3-D Euler equation
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 5
SP - 1
EP - 44
AB - We prove the exact boundary controllability of the 3-D Euler equation of incompressible inviscid fluids on a regular connected bounded open set when the control operates on an open part of the boundary that meets any of the connected components of the boundary.
LA - eng
KW - Controllability; boundary control; Euler equation for ideal incompressible fluids.; boundary controllability; exact controllability; control of fluid flow; 3-D Euler equation
UR - http://eudml.org/doc/197362
ER -

References

top
  1. C. Bardos and U. Frisch, Finite-time regularity for bounded and unbounded ideal incompressible fluids using Hölder estimates, in Proceedings of the conference held at the university of Paris-Sud Orsay, France. Springer-Verlag, Lectures Notes in Math.565 (1975) 1-13.  
  2. J.-M. Coron, Global Asymptotic Stabilization for controllable systems without drift. Math. Control Signals Systems5 (1992) 295-312.  
  3. J.-M. Coron, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math.317 (1993) 271-276.  
  4. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl.75 (1996) 155-188.  
  5. J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM Control Optim. Calc. Var.1 (1996) 35-75. http://www.emath.fr/cocv/.  
  6. O. Glass, Exact boundary controllability of 3-D Euler equation of perfect incompressible fluids. C. R. Acad. Sci. Paris Sér. I Math.325 (1997) 987-992.  
  7. O. Glass, Contrôlabilité de l'équation d'Euler tridimensionnelle pour les fluides parfaits incompressibles, Séminaire Équations aux Dérivées Partielles, 1997-1998, École polytechnique, Centre de Mathématiques, exposé XV.  
  8. P. Hermann and H. Kersten, Über die stetige Abhängigkeit der Lösung des Neumann-Problems für die Prae-Maxwellschen Gleichungen von ihren Randdaten. Arch. Math. (Basel)36 (1981) 79-82.  
  9. A.V. Kazhikov, Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid. PMM USSR44 (1981) 672-674.  
  10. J.-L. Lions, Are there connections between turbulence and controllability?, 9th INRIA International Conference, Antibes (June 12-15, 1990).  
  11. R. Temam, Navier-Stokes equations and numerical analysis. North-Holland Pub. (1979).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.