# Exact boundary controllability of 3-D Euler equation

ESAIM: Control, Optimisation and Calculus of Variations (2010)

- Volume: 5, page 1-44
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topGlass, Olivier. "Exact boundary controllability of 3-D Euler equation." ESAIM: Control, Optimisation and Calculus of Variations 5 (2010): 1-44. <http://eudml.org/doc/197362>.

@article{Glass2010,

abstract = {
We prove the exact boundary controllability of the 3-D Euler equation
of incompressible inviscid fluids on a regular connected bounded open set when the
control operates on an open part of the boundary that
meets any of the connected components of the boundary.
},

author = {Glass, Olivier},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Controllability; boundary control; Euler equation for ideal incompressible fluids.; boundary controllability; exact controllability; control of fluid flow; 3-D Euler equation},

language = {eng},

month = {3},

pages = {1-44},

publisher = {EDP Sciences},

title = {Exact boundary controllability of 3-D Euler equation},

url = {http://eudml.org/doc/197362},

volume = {5},

year = {2010},

}

TY - JOUR

AU - Glass, Olivier

TI - Exact boundary controllability of 3-D Euler equation

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2010/3//

PB - EDP Sciences

VL - 5

SP - 1

EP - 44

AB -
We prove the exact boundary controllability of the 3-D Euler equation
of incompressible inviscid fluids on a regular connected bounded open set when the
control operates on an open part of the boundary that
meets any of the connected components of the boundary.

LA - eng

KW - Controllability; boundary control; Euler equation for ideal incompressible fluids.; boundary controllability; exact controllability; control of fluid flow; 3-D Euler equation

UR - http://eudml.org/doc/197362

ER -

## References

top- C. Bardos and U. Frisch, Finite-time regularity for bounded and unbounded ideal incompressible fluids using Hölder estimates, in Proceedings of the conference held at the university of Paris-Sud Orsay, France. Springer-Verlag, Lectures Notes in Math.565 (1975) 1-13.
- J.-M. Coron, Global Asymptotic Stabilization for controllable systems without drift. Math. Control Signals Systems5 (1992) 295-312.
- J.-M. Coron, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math.317 (1993) 271-276.
- J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl.75 (1996) 155-188.
- J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM Control Optim. Calc. Var.1 (1996) 35-75. http://www.emath.fr/cocv/.
- O. Glass, Exact boundary controllability of 3-D Euler equation of perfect incompressible fluids. C. R. Acad. Sci. Paris Sér. I Math.325 (1997) 987-992.
- O. Glass, Contrôlabilité de l'équation d'Euler tridimensionnelle pour les fluides parfaits incompressibles, Séminaire Équations aux Dérivées Partielles, 1997-1998, École polytechnique, Centre de Mathématiques, exposé XV.
- P. Hermann and H. Kersten, Über die stetige Abhängigkeit der Lösung des Neumann-Problems für die Prae-Maxwellschen Gleichungen von ihren Randdaten. Arch. Math. (Basel)36 (1981) 79-82.
- A.V. Kazhikov, Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid. PMM USSR44 (1981) 672-674.
- J.-L. Lions, Are there connections between turbulence and controllability?, 9th INRIA International Conference, Antibes (June 12-15, 1990).
- R. Temam, Navier-Stokes equations and numerical analysis. North-Holland Pub. (1979).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.