The internal stabilization by noise of the linearized Navier-Stokes equation*
ESAIM: Control, Optimisation and Calculus of Variations (2011)
- Volume: 17, Issue: 1, page 117-130
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- J.A.D. Apleby, X. Mao and A. Rodkina, Stochastic stabilization of functional differential equations. Syst. Control Lett.54 (2005) 1069–1081.
- J.A.D. Apleby, X. Mao and A. Rodkina, Stabilization and destabilization of nonlinear differential equations by noise. IEEE Trans. Automat. Contr.53 (2008) 683–691.
- L. Arnold, H. Craul and V. Wihstutz, Stabilization of linear systems by noise. SIAM J. Contr. Opt.21 (1983) 451–461.
- V. Barbu, Feedback stabilization of Navier-Stokes equations. ESAIM: COCV9 (2003) 197–205.
- V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite dimensional controllers. Indiana Univ. Math. J.53 (2004) 1443–1494.
- V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Memoires Amer. Math. Soc. AMS, USA (2006).
- T. Caraballo, K. Liu and X. Mao, On stabilization of partial differential equations by noise. Nagoya Math. J.101 (2001) 155–170.
- T. Caraballo, H. Craul, J.A. Langa and J.C. Robinson, Stabilization of linear PDEs by Stratonovich noise. Syst. Control Lett.53 (2004) 41–50.
- S. Cerrai, Stabilization by noise for a class of stochastic reaction-diffusion equations. Prob. Th. Rel. Fields133 (2000) 190–214.
- G. Da Prato, An Introduction to Infinite Dimensional Analysis. Springer-Verlag, Berlin, Germany (2006).
- H. Ding, M. Krstic and R.J. Williams, Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Trans. Automat. Contr.46 (2001) 1237–1253.
- J. Duan and A. Fursikov, Feedback stabilization for Oseen Fluid Equations. A stochastic approach. J. Math. Fluids Mech.7 (2005) 574–610.
- A. Fursikov, Real processes of the 3-D Navier-Stokes systems and its feedback stabilization from the boundary, in AMS Translations, Partial Differential Equations, M. Vîshnik Seminar206, M.S. Agranovic and M.A. Shubin Eds. (2002) 95–123.
- A. Fursikov, Stabilization for the 3-D Navier-Stokes systems by feedback boundary control. Discrete Contin. Dyn. Syst.10 (2004) 289-314.
- T. Kato, Perturbation Theory of Linear Operators. Springer-Verlag, New York, Berlin (1966).
- S. Kuksin and A. Shirikyan, Ergodicity for the randomly forced 2D Navier-Stokes equations. Math. Phys. Anal. Geom.4 (2001) 147–195.
- T. Kurtz, Lectures on Stochastic Analysis. Lecture Notes Online, Wisconsin (2007), available at . URIhttp://www.math.wisc.edu/~kurtz/735/main735.pdf
- R. Lipster and A.N. Shiraev, Theory of Martingals. Dordrecht, Kluwer (1989).
- X.R. Mao, Stochastic stabilization and destabilization. Syst. Control Lett.23 (2003) 279–290.
- J.P. Raymond, Feedback boundary stabilization of the two dimensional Navier-Stokes equations. SIAM J. Contr. Opt.45 (2006) 790–828.
- J.P. Raymond, Feedback boundary stabilization of the three dimensional incompressible Navier-Stokes equations. J. Math. Pures Appl.87 (2007) 627–669.
- A. Shirikyan, Exponential mixing 2D Navier-Stokes equations perturbed by an unbounded noise. J. Math. Fluids Mech.6 (2004) 169–193.