Structural Evolution of the Taylor Vortices

Tian Ma; Shouhong Wang

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 34, Issue: 2, page 419-437
  • ISSN: 0764-583X

Abstract

top
We classify in this article the structure and its transitions/evolution of the Taylor vortices with perturbations in one of the following categories: a) the Hamiltonian vector fields, b) the divergence-free vector fields, and c). the solutions of the Navier-Stokes equations on the two-dimensional torus. This is part of a project oriented toward to developing a geometric theory of incompressible fluid flows in the physical spaces.

How to cite

top

Ma, Tian, and Wang, Shouhong. "Structural Evolution of the Taylor Vortices." ESAIM: Mathematical Modelling and Numerical Analysis 34.2 (2010): 419-437. <http://eudml.org/doc/197410>.

@article{Ma2010,
abstract = { We classify in this article the structure and its transitions/evolution of the Taylor vortices with perturbations in one of the following categories: a) the Hamiltonian vector fields, b) the divergence-free vector fields, and c). the solutions of the Navier-Stokes equations on the two-dimensional torus. This is part of a project oriented toward to developing a geometric theory of incompressible fluid flows in the physical spaces. },
author = {Ma, Tian, Wang, Shouhong},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Divergence-free vector fields; Hamiltonian vector fields; Taylor vortices; Navier-Stokes equations; block structure; block structural stability; structural evolution.; classification; Taylor vortices; perturbations; divergence-free vector fields; two-dimensional torus},
language = {eng},
month = {3},
number = {2},
pages = {419-437},
publisher = {EDP Sciences},
title = {Structural Evolution of the Taylor Vortices},
url = {http://eudml.org/doc/197410},
volume = {34},
year = {2010},
}

TY - JOUR
AU - Ma, Tian
AU - Wang, Shouhong
TI - Structural Evolution of the Taylor Vortices
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 2
SP - 419
EP - 437
AB - We classify in this article the structure and its transitions/evolution of the Taylor vortices with perturbations in one of the following categories: a) the Hamiltonian vector fields, b) the divergence-free vector fields, and c). the solutions of the Navier-Stokes equations on the two-dimensional torus. This is part of a project oriented toward to developing a geometric theory of incompressible fluid flows in the physical spaces.
LA - eng
KW - Divergence-free vector fields; Hamiltonian vector fields; Taylor vortices; Navier-Stokes equations; block structure; block structural stability; structural evolution.; classification; Taylor vortices; perturbations; divergence-free vector fields; two-dimensional torus
UR - http://eudml.org/doc/197410
ER -

References

top
  1. R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley: Reading, MA (1978).  
  2. D.V. Anosov and V. Arnold, Dynamical Systems I, Springer-Verlag, New York, Heidelberg, Berlin (1985).  
  3. V. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, Heidelberg, Berlin (1978).  
  4. Alain Bensoussan, Jacques-Louis Lions and Papanicolaou George, Asymptotic analysis for periodic structures, Ser. Studies in Mathematics and its Applications. 5; North-Holland Publishing Co., Amsterdam (1978) 700.  
  5. D. Chillingworth, Differential topology with a view to applications. Pitman, London, San Francisco, Melbourne. Research Notes in Mathematics, 9 (1976).  
  6. A. Chorin, Vorticity and Turbulence, Springer-Verlag (1994).  
  7. P. Constantin and C. Foias, The Navier-Stokes Equations, Univ. of Chicago Press, Chicago (1988).  
  8. L. Caffarelli and R. Kohn and L. Nirenberg, On the regularity of the solutions of Navier-Stokes Equations. Comm. Pure Appl. Math.35 (1982) 771-831.  
  9. Strebel, Kurt, Quadratic differentials, Springer-Verlag, Berlin (1984) 184.  
  10. A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les surfaces. Asterisque66-67 (1979).  
  11. A. Fannjiang and G. Papanicolaou, Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math.54 (1994) 333-408.  
  12. H. Hopf, Abbildungsklassen n-dimensionaler mannigfaltigkeiten. Math. Annalen96 (1926) 225-250.  
  13. D. Gottlieb, Vector fields and classical theorems of topology. Rendiconti del Seminario Matematico e Fisico, Milano60 (1990) 193-203.  
  14. J. Milnor, Topology from the differentiable viewpoint. University Press of Virginia, based on notes by D.W. Weaver, Charlottseville (1965).  
  15. J. Guckenheimer and P.J. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer-Verlag, New York, Heidelberg, Berlin (1983).  
  16. J.K. Hale, Ordinary differential equations, Robert E. Krieger Publishing Company, Malabar, Florida (1969).  
  17. M.W. Hirsch, Differential topology, Springer-Verlag, New York, Heidelberg, Berlin (1976).  
  18. J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris (1969).  
  19. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press (1995).  
  20. J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que posent l'hydrodynamique. J. Math. Pures et Appl.XII (1933) 1-82.  
  21. J.L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of the atmosphere and applications. Nonlinearity5 (1992) 237-288.  
  22. J.L. Lions, R. Temam and S. Wang, On the Equations of Large-Scale Ocean. Nonlinearity5 (1992) 1007-1053.  
  23. J.L. Lions, R. Temam and S. Wang, Models of the coupled atmosphere and ocean (CAO I). Computational Mechanics Advance, 1 (1993) 3-54.  
  24. J.L. Lions, R. Temam and S. Wang, Geostrophic Asymptotics of the Primitive Equations of the Atmosphere. Topological Methods in Nonlinear Analysis4; note "Special issue dedicated to J. Leray" (1994) 253-287.  
  25. J.L. Lions, R. Temam and S. Wang, Mathematical study of the coupled models of atmosphere and ocean (CAO III). J. Math. Pures Appl.73 (1995) 105-163.  
  26. J.L. Lions, R. Temam and S. Wang, A Simple Global Model for the General Circulation of the Atmosphere, "Dedicated to Peter D. Lax and Louis Nirenberg on the occasion of their 70th birthdays''. Comm. Pure. Appl. Math.50 (1997) 707-752.  
  27. P.L. Lions, Mathematical Topics in Fluid Mechanics, Oxford science Publications (1996).  
  28. A. Majda, Vorticity and the mathematical theory of incompressible fluid flow. Frontiers of the mathematical sciences: 1985 (New York). Comm. Pure Appl. Math.39 (1986) S187-S220.  
  29. T. Ma and S. Wang, Dynamics of Incompressible Vector Fields. Appl. Math. Lett.12 (1999) 39-42.  
  30. T. Ma and S. Wang, Dynamics of 2-D Incompressible Flows. Proceedings of the International Conferences on Differential Equations and Computation (1999).  
  31. T. Ma and S. Wang, The Geometry of the Stream Lines of Steady States of the Navier-Stokes Equations. Contemporary Mathematics, AMS238 (1999) 193-202.  
  32. T. Ma and S. Wang, Block structure and stability of 2-D Incompressible Flows (in preparation, 1999).  
  33. T. Ma and S. Wang, Structural classification and stability of divergence-free vector fields. Nonlinearity (revised, 1999).  
  34. A. Majda, The interaction of nonlinear analysis and modern applied mathematics. Proc. Internat. Congress Math., Kyoto, 1990, Springer-Verlag, New York, Heidelberg, Berlin (1991) Vol. 1.  
  35. N. Markley, The Poincaré-Bendixson theorem for Klein bottle. Trans. AMS135 (1969).  
  36. L. Markus and R. Meyer, Generic Hamiltonian systems are neither integrable nor ergodic. Memoirs of the American Mathematical Society144 (1974).  
  37. J. Moser, Stable and Random Motions in Dynamical Systems. Ann. Math. Stud. No. 77. Princeton (1973).  
  38. J. Palis and W. de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York, Heidelberg, Berlin (1982).  
  39. J. Palis and S. Smale, Structural stability theorem. Global Analysis. Proc. Symp. in Pure Math.XIV (1970).  
  40. M. Peixoto, Structural stability on two dimensional manifolds. Topology1 (1962) 101-120.  
  41. C. Pugh, The closing lemma. Amer. J. Math.89 (1967) 956-1009.  
  42. Shub, Michael, Stabilité globale des systèmes dynamiques. Société Mathématique de France. Note With an English preface and summary. Astérisque56 (1978) iv+211.  
  43. C. Robinson, Generic properties of conservative systems, I, II. Amer. J. Math.92 (1970) 562-603 and 897-906.  
  44. C. Robinson, Structure stability of vector fields. Ann. of Math.99 (1974) 154-175.  
  45. C. Robinson, Structure stability of C1 diffeomorphisms. J. Differential Equations22 (1976) 28-73.  
  46. G. Schwartz, Hodge decomposition-A method for solving boundary value problems. Lecture Notes in Mathematics1607 Springer-Verlag (1995).  
  47. S. Smale, Differential dynamical systems. Bull. AMS73 (1967) 747-817.  
  48. F. Takens, Hamiltonian systems: generic properties of closed orbits and local perturbations. Math. Ann.188 (1970) 304-312.  
  49. G.I. Taylor, Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc. A223 (1923) 289-343.  
  50. R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, 3rd edition, North Holland, Amsterdam (1984).  
  51. R. Thom, Structural Stability and Morphogenesis, Benjamin-Addison Wesley (1975).  
  52. W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces. Bull. AMS19 (1988) 417-431.  
  53. V. Trofimov, Introduction to Geometry on Manifolds with Symmetry, MIA Kluwer Academic Publishers (1994).  
  54. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, Heidelberg, Berlin (1990).  
  55. J.C. Yoccoz, Recent developments in dynamics, in Proc. Internat. Congress Math., Zurich (1994), Birkhauser Verlag, Basel, Boston, Berlin (1994) 246-265 Vol. 1.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.