Un schéma d'interpolation rationnel sur un quadrilatère de classe C2
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 34, Issue: 5, page 913-922
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topLaghchim-Lahlou, Mohammed. "Un schéma d'interpolation rationnel sur un quadrilatère de classe C2." ESAIM: Mathematical Modelling and Numerical Analysis 34.5 (2010): 913-922. <http://eudml.org/doc/197461>.
@article{Laghchim2010,
abstract = {
Let $\mathcal\{Q\}$ be a partition of a polygonal domain of the plan
into convexe quadrilaterals. Given a regular function f , we construct a
function πƒ
∈ C2(Ω), interpolating position values and
derivatives of f up of order 2 at vertices of $\mathcal\{Q\}.$ On each
quadrilateral $Q\in\mathcal\{Q\},$
πƒ|Q is a finite element obtained
from a polynomial scheme of FVS type by adding some rational functions.
},
author = {Laghchim-Lahlou, Mohammed},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Finite elements; rational Hermite interpolation.},
language = {eng},
month = {3},
number = {5},
pages = {913-922},
publisher = {EDP Sciences},
title = {Un schéma d'interpolation rationnel sur un quadrilatère de classe C2},
url = {http://eudml.org/doc/197461},
volume = {34},
year = {2010},
}
TY - JOUR
AU - Laghchim-Lahlou, Mohammed
TI - Un schéma d'interpolation rationnel sur un quadrilatère de classe C2
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 5
SP - 913
EP - 922
AB -
Let $\mathcal{Q}$ be a partition of a polygonal domain of the plan
into convexe quadrilaterals. Given a regular function f , we construct a
function πƒ
∈ C2(Ω), interpolating position values and
derivatives of f up of order 2 at vertices of $\mathcal{Q}.$ On each
quadrilateral $Q\in\mathcal{Q},$
πƒ|Q is a finite element obtained
from a polynomial scheme of FVS type by adding some rational functions.
LA - eng
KW - Finite elements; rational Hermite interpolation.
UR - http://eudml.org/doc/197461
ER -
References
top- K.N. Agbeve, Eléments finis triangulaires rationnels de classeCk. Thèse de Doctorat, Université de Nantes (1993).
- P. Alfeld, A bivariate C2 Clough-Tocher scheme. Comput. Aided Geom. Design1 (1984) 257-267.
- J.H. Argyris, I. Fried et D.W. Scharpf, The TUBA family of plate elements for the matrix displacement method. The Aeronautical Journal of the Royal Aeronautical Society72 (1968) 701-709.
- G. Farin, Triangular Bernstein-Bézier patches. Comput. Aided Geom. Design2 (1986) 83-127.
- G. Fraeijs de Veubeke, Bending and Stretching of plates, in Conference on matrix methods in structural mechanics, Wright Patterson A.F.B., Ohio (1965).
- G. Herron, A characterisation of C1 discrete triangular interpolants. SIAM J. Numer. Anal. 22 (1985) 811-819.
- M.J. Lai, On dual functionals of polynomials in B-form. J. Approx. Theory67 (1991) 19-37.
- M. Laghchim-Lahlou et P. Sablonnière, Triangular finite elements of HCT type and class Cp. Adv. Comput. Math.2 (1994) 101-122.
- M. Laghchim-Lahlou et P. Sablonnière, Cr-finite elements of Powell-Sabin type on the three direction mesh. Adv. Comput. Math.6 (1996) 191-206.
- A. Le Méhauté, Interpolation et approximation par des fonctions polynômiales par morceaux dans. Thèse de Doctorat ès Sciences, Université de Rennes (1984).
- M. Laghchim-Lahlou et P. Sablonnière, Quadrilateral finite elements of FVS type and class Cp. Numer. Math. 70 (1995) 229-243.
- M.J. Lai et L.L. Schumaker, Scattered data interpolation using C2 Supersplines of degree six. SIAM J. Numer. Anal. 34 (1997) 905-921.
- L.L. Schumaker, On the dimension of spaces of piecewise polynomials in two variables, in Multivariate Approximation Theory, W. Schempp et K. Zeller Eds., Birkhäuser Verlag, ISNM51 (1979) 396-412.
- T. Wang, A C2 quintic spline interpolation scheme on triangulation. Comput. Aided Geom. Design9 (1992) 379-386.
- A. Ženišek, A general theorem on triangular finite Cm-elements. RAIRO Anal. Numér. 8 (1974) 119-127.
- O.C. Zienkiewicz, The finite element method in structural continum mechanics. Mc Graw Hill, London (1967).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.