Dynamic Programming for the stochastic Navier-Stokes equations
Giuseppe da Prato; Arnaud Debussche
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 34, Issue: 2, page 459-475
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topda Prato, Giuseppe, and Debussche, Arnaud. "Dynamic Programming for the stochastic Navier-Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis 34.2 (2010): 459-475. <http://eudml.org/doc/197463>.
@article{daPrato2010,
abstract = {
We solve an optimal cost problem for a stochastic
Navier-Stokes equation in space dimension 2 by proving
existence and uniqueness of a smooth solution of the
corresponding Hamilton-Jacobi-Bellman equation.
},
author = {da Prato, Giuseppe, Debussche, Arnaud},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Stochastic Navier-Stokes equations; dynamic programming;
optimal control; Hamilton-Jacobi-Bellmann equations.; optimal cost problem; stochastic Navier-Stokes equation; existence; uniqueness; smooth solution; Hamilton-Jacobi-Bellman equation},
language = {eng},
month = {3},
number = {2},
pages = {459-475},
publisher = {EDP Sciences},
title = {Dynamic Programming for the stochastic Navier-Stokes equations},
url = {http://eudml.org/doc/197463},
volume = {34},
year = {2010},
}
TY - JOUR
AU - da Prato, Giuseppe
AU - Debussche, Arnaud
TI - Dynamic Programming for the stochastic Navier-Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 2
SP - 459
EP - 475
AB -
We solve an optimal cost problem for a stochastic
Navier-Stokes equation in space dimension 2 by proving
existence and uniqueness of a smooth solution of the
corresponding Hamilton-Jacobi-Bellman equation.
LA - eng
KW - Stochastic Navier-Stokes equations; dynamic programming;
optimal control; Hamilton-Jacobi-Bellmann equations.; optimal cost problem; stochastic Navier-Stokes equation; existence; uniqueness; smooth solution; Hamilton-Jacobi-Bellman equation
UR - http://eudml.org/doc/197463
ER -
References
top- F. Abergel and R. Temam, On some control problems in fluid mechanics. Theor. and Comp. Fluid Dynamics1 (1990) 303-325.
- V. Barbu and S. Sritharan, H∞-control theory of fluids dynamics. Proc. R. Soc. Lond. A454 (1998) 3009-3033.
- T. Bewley, P. Moin and R. Temam, Optimal and robust approaches for linear and nonlinear regulartion problems in fluid mechanics, AIAA 97-1872, 28th AIAA Fluid Dynamics Conference and 4th AIAA Shear Flow Control Conference (1997).
- P. Cannarsa and G. da Prato, Some results on nonlinear optimal control problems and Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal.90 (1990) 27-47.
- P. Cannarsa and G. da Prato, Direct solution of a second order Hamilton-Jacobi equation in Hilbert spaces, in: Stochastic partial differential equations and applications, G. da Prato and L. Tubaro Eds, Pitman Research Notes in Mathematics Series n.268 (1992) pp. 72-85.
- S. Cerrai, Optimal control problem for stochastic reaction-diffusion systems with non Lipschitz coefficients (to appear).
- H. Choi, R. Temam, P. Moin and J. Kim, Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech.253 (1993) 509-543.
- G. da Prato and A. Debussche, Differentiability of the transition semigroup of stochastic Burgers equation. Rend. Acc. Naz. Lincei, s.9, v. 9 (1998) 267-277.
- G. da Prato and A. Debussche, Dynamic Programming for the stochastic Burgers equations. Annali di Mat. Pura ed Appl. (to appear).
- G. da prato and J. Zabczyk, Differentiability of the Feynman-Kac semigroup and a control application. Rend. Mat. Acc. Lincei. s.9, v. 8 (1997) 183-188.
- H. Fattorini and S. Sritharan, Existence of optimal controls for viscous flow problems. Proc. R. Soc. Lond. A439 (1992) 81-102.
- F. Gozzi, Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem. Commun. in partial differential equations20 (1995) 775-826.
- F. Gozzi, Global Regular Solutions of Second Order Hamilton-Jacobi Equations in Hilbert spaces with locally Lipschitz nonlinearities. J. Math. Anal. Appl.198 (1996) 399-443.
- P.L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: The case of bounded stochastic evolution. Acta Math.161 (1988) 243-278.
- S. Sritharan, Dynamic programming of the Navier-Stokes equations. Syst. Cont. Lett.16 (1991) 299-307.
- S. Sritharan, An introduction to deterministic and stochastic control of viscous flow, in Optimal control of viscous flows, p. 1-42, SIAM, Philadelphia, S. Sritharan Ed.
- A. Swiech, Viscosity solutions of fully nonlinear partial differential equations with "unbounded'' terms in infinite dimensions, Ph.D. thesis, University of California at Santa Barbara (1993).
- R. Temam, T. Bewley and P.Moin, Control of turbulent flows, Proc. of the 18th IFIP TC7, Conf. on system modelling ond optimization, Detroit, Michigan (1997).
- R. Temam, The Navier-Stokes equation, North-Holland (1977).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.