On blow-up of solution for Euler equations
Eric Behr; Jindřich Nečas; Hongyou Wu
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 35, Issue: 2, page 229-238
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBehr, Eric, Nečas, Jindřich, and Wu, Hongyou. "On blow-up of solution for Euler equations." ESAIM: Mathematical Modelling and Numerical Analysis 35.2 (2010): 229-238. <http://eudml.org/doc/197488>.
@article{Behr2010,
abstract = { We present numerical evidence for the blow-up of solution for the
Euler equations. Our approximate solutions are Taylor polynomials in the time
variable of an exact solution, and we believe that in terms of the exact solution,
the blow-up will be rigorously proved.
},
author = {Behr, Eric, Nečas, Jindřich, Wu, Hongyou},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Euler equations; blow-up of solution.; blow-up of solution; approximate solutions; Taylor polynomials},
language = {eng},
month = {3},
number = {2},
pages = {229-238},
publisher = {EDP Sciences},
title = {On blow-up of solution for Euler equations},
url = {http://eudml.org/doc/197488},
volume = {35},
year = {2010},
}
TY - JOUR
AU - Behr, Eric
AU - Nečas, Jindřich
AU - Wu, Hongyou
TI - On blow-up of solution for Euler equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 2
SP - 229
EP - 238
AB - We present numerical evidence for the blow-up of solution for the
Euler equations. Our approximate solutions are Taylor polynomials in the time
variable of an exact solution, and we believe that in terms of the exact solution,
the blow-up will be rigorously proved.
LA - eng
KW - Euler equations; blow-up of solution.; blow-up of solution; approximate solutions; Taylor polynomials
UR - http://eudml.org/doc/197488
ER -
References
top- H. Bellout, J. Necas and K.R. Rajagopal, On the existence and uniqueness of flows of multipolar fluids of grade 3 and their stability. Internat. J. Engrg. Sci.37 (1999) 75-96.
- J.-M. Delort, Estimations fines pour des opérateurs pseudo-différentiels analytiques sur un ouvert à bord de application aux equations d'Euler. Comm. Partial Differential Equations10 (1985) 1465-1525.
- R. Grauer and T. Sideris, Numerical computation of three dimensional incompressible ideal fluids with swirl. Phys. Rev. Lett.67 (1991) 3511.
- R. Grauer and T. Sideris, Finite time singularities in ideal fluids with swirl. Phys. D88 (1995) 116-132.
- E. Hille and R.S. Phillips, Functional analysis and semi-Groups. Amer. Math. Soc., Providence, R.I. (1957).
- R. Kerr, Evidence for a singularity of the three-dimensional incompressible Euler equations. Phys. FluidsA5 (1993) 1725-1746.
- J. Leray, Sur le mouvement d'un liquide visqueux remplissant l'espace. Acta Math.63 (1934) 193-248.
- P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1. Incompressible models. Oxford University Press, New York (1996).
- J. Málek, J. Necas, M. Pokorný and M. Schonbek, On possible singular solutions to the Navier-Stokes equations. Math. Nachr.199 (1999) 97-114.
- J. Necas, Theory of multipolar fluids. Problems and methods in mathematical physics (Chemnitz, 1993) 111-119. Teubner, Stuttgart, Teubner-Texte Math.134 (1994).
- J. Necas, M. Růzicka and V. Sverák, Sur une remarque de J. Leray concernant la construction de solutions singulières des équations de Navier-Stokes. C. R. Acad. Sci. Paris Sér. I Math.323 (1996) 245-249.
- J. Necas, M. Růzicka and V. Sverák, On Leray's self-similar solutions of the Navier-Stokes equations. Acta Math.176 (1996) 283-294.
- A. Pumir and E. Siggia, Collapsing solutions to the 3-D Euler equations. Phys. FluidsA2 (1990) 220-241.
- A. Pumir and E. Siggia, Development of singular solutions to the axisymmetric Euler equations. Phys. FluidsA4 (1992) 1472-1491.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.