Embedding and a priori wavelet-adaptivity for Dirichlet problems
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 34, Issue: 6, page 1189-1202
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topRieder, Andreas. "Embedding and a priori wavelet-adaptivity for Dirichlet problems." ESAIM: Mathematical Modelling and Numerical Analysis 34.6 (2010): 1189-1202. <http://eudml.org/doc/197525>.
@article{Rieder2010,
abstract = {
The accuracy of the domain embedding method from [A. Rieder, Modél. Math.
Anal. Numér.32 (1998) 405-431] for the solution of Dirichlet problems
suffers under a coarse boundary approximation. To overcome this drawback the method
is furnished with
an a priori (static) strategy for an adaptive approximation space refinement near the
boundary. This is done by selecting suitable wavelet subspaces.
Error estimates and
numerical experiments validate the proposed adaptive scheme.
In contrast to similar, but rather theoretical, concepts already described in the
literature our approach combines a high generality with an easy-to-implement algorithm.
},
author = {Rieder, Andreas},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Boundary value problem; fictitious domain; Galerkin scheme; biorthogonal wavelet system; adapted grid.; domain embedding method; Galerkin method; Dirichlet problem; error estimates; adaptivity; compactly supported wavelets; fictitious domain method; numerical experiments},
language = {eng},
month = {3},
number = {6},
pages = {1189-1202},
publisher = {EDP Sciences},
title = {Embedding and a priori wavelet-adaptivity for Dirichlet problems},
url = {http://eudml.org/doc/197525},
volume = {34},
year = {2010},
}
TY - JOUR
AU - Rieder, Andreas
TI - Embedding and a priori wavelet-adaptivity for Dirichlet problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 6
SP - 1189
EP - 1202
AB -
The accuracy of the domain embedding method from [A. Rieder, Modél. Math.
Anal. Numér.32 (1998) 405-431] for the solution of Dirichlet problems
suffers under a coarse boundary approximation. To overcome this drawback the method
is furnished with
an a priori (static) strategy for an adaptive approximation space refinement near the
boundary. This is done by selecting suitable wavelet subspaces.
Error estimates and
numerical experiments validate the proposed adaptive scheme.
In contrast to similar, but rather theoretical, concepts already described in the
literature our approach combines a high generality with an easy-to-implement algorithm.
LA - eng
KW - Boundary value problem; fictitious domain; Galerkin scheme; biorthogonal wavelet system; adapted grid.; domain embedding method; Galerkin method; Dirichlet problem; error estimates; adaptivity; compactly supported wavelets; fictitious domain method; numerical experiments
UR - http://eudml.org/doc/197525
ER -
References
top- A. Barinka, T. Barsch, P. Charton, A. Cohen, S. Dahlke, W. Dahmen and K. Urban, Adaptive wavelet schemes for elliptic problems: implementation and numerical experiments. Tech. Report 173, Institut für Geometrie und Praktische Mathematik, RWTH Aachen, 52056 Aachen, Germany (1999).
- G. Beylkin, R. Coifman and V. Rokhlin, Fast wavelet transforms and numerical algorithms I. Comm. Pure Appl. Math.44 (1991) 141-183.
- J.H. Bramble and S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal.7 (1970) 112-124.
- W. Cai and W. Zhang, An adaptive spline wavelet ADI(SW-ADI) method for two-dimensional reaction diffusion equations. J. Comput. Phys.139 (1998) 92-126.
- C. Canuto, A. Tabacco and K. Urban, The wavelet element method, part I: construction and analysis. Appl. Comput. Harmon. Anal.6 (1999) 1-52.
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Stud. Math. Appl.4, North-Holland, Amsterdam (1978).
- A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods for elliptic operator equations - convergence rates. Math. Comp. posted on May 23, 2000, PII S0025-5718(00)01252-7 (to appear in print).
- A. Cohen, I. Daubechies and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math.45 (1992) 485-560.
- S. Dahlke, W. Dahmen, R. Hochmuth and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math.23 (1997) 21-48.
- S. Dahlke, V. Latour and K. Gröchenig, Biorthogonal box spline wavelet bases, in Surface Fitting and Multiresolution Methods, A.L. Méhauté, C. Rabut and L.L. Schumaker Eds., Vanderbilt University Press (1997) 83-92.
- W. Dahmen, Stability of multiscale transformations. J. Fourier Anal. Appl.2 (1996) 341-362.
- W. Dahmen, Wavelet and multiscale methods for operator equations. Acta Numer.6 (1997) 55-228.
- W. Dahmen, A. Kurdila and P. Oswald Eds., Multiscale Wavelet Methods for Partial Differential Equations. Wavelet Anal. Appl.6, Academic Press, San Diego (1997).
- W. Dahmen, S. Prössdorf and R. Schneider, Wavelet approximation methods for pseudodifferential equations. II. Matrix compression and fast solution. Adv. Comput. Math.1 (1993) 259-335.
- W. Dahmen and R. Schneider, Composite wavelet bases for operator equations. Math. Comp.68 (1999) 1533-1567.
- W. Dahmen and R. Stevenson, Element-by-element construction of wavelets satisfying stability and moment conditions. SIAM J. Numer. Anal.37 (1999) 319-352.
- I. Daubechies, Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math.41 (1988) 906-966.
- I. Daubechies, Ten Lectures on Wavelets. CBMS-NSF Ser. in Appl. Math.61, SIAM Publications, Philadelphia (1992).
- J. Fröhlich and K. Schneider, An adaptive wavelet-Galerkin algorithm for one- and two-dimensional flame computations. Eur. J. Mech. B Fluids11 (1994) 439-471.
- J. Fröhlich and K. Schneider, An adaptive wavelet-vaguelette algorithm for the solution of nonlinear PDEs. J. Comput. Phys.130 (1997) 174-190.
- R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer Ser. Comput. Phys., Springer-Verlag, New York (1984).
- R. Glowinski, Finite element methods for the numerical simulation of incompressible viscous flow: Introduction to the control of the Navier-Stokes equations, in Vortex Dynamics and Vortex Methods, C.R. Anderson and C. Greengard Eds., Lectures in Appl. Math.28, Providence, AMS (1991) 219-301.
- R. Glowinski, T.-W. Pan and J. Périaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg.111 (1994) 283-303.
- R. Glowinski, T.-W. Pan and J. Périaux, A Lagrange multiplier/fictitious domain method for the Dirichlet problem - generalizations to some flow problems. Japan J. Indust. Appl. Math.12 (1995) 87-108.
- R. Glowinski, T.-W. Pan and J. Périaux, Fictitious domain methods for the simulation of Stokes flow past a moving disk, in Computational Fluid Dynamics '96, J.A. Desideri, C. Hirsh, P. LeTallec, M. Pandolfi and J. Périaux Eds., Chichester, Wiley (1996) 64-70.
- W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment. Springer Ser. Comput. Math.18, Springer-Verlag, Heidelberg (1992).
- S. Jaffard, Wavelet methods for fast resolution of elliptic problems. SIAM J. Numer. Anal.29 (1992) 965-986.
- S. Jaffard and Y. Meyer, Bases d'ondelettes dans des ouverts de . J. Math. Pures Appl.68 (1992) 95-108.
- A.K. Louis, P. Maass and A. Rieder, Wavelets: Theory and Applications. Pure Appl. Math., Wiley, Chichester (1997).
- Y. Meyer, Ondelettes et Opérateurs I: Ondelettes. Actualités Mathématiques, Hermann, Paris (1990). English version: Wavelets and Operators, Cambridge University Press (1992).
- P. Oswald, Multilevel solvers for elliptic problems on domains, in Dahmen et al. [] 3-58.
- A. Rieder, On embedding techniques for 2nd-order elliptic problems, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Périaux and M.F. Wheeler Eds., Wiley, Chichester (1997) 179-188.
- A. Rieder, A domain embedding method for Dirichlet problems in arbitrary space dimension. RAIRO Modél. Math. Anal. Numér.32 (1998) 405-431.
- E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Math. Ser.22, Princeton University Press, Princeton (1970).
- J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge, UK (1987).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.