Interpolants d'Hermite C2 obtenus par subdivision
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 33, Issue: 1, page 55-65
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topMerrien, Jean-Louis. "Interpolants d'Hermite C2 obtenus par subdivision." ESAIM: Mathematical Modelling and Numerical Analysis 33.1 (2010): 55-65. <http://eudml.org/doc/197533>.
@article{Merrien2010,
abstract = {
We propose a two point subdivision scheme with parameters to draw curves that satisfy Hermite conditions at both ends of [a,b]. We build three functions f,p and s on dyadic numbers and, using infinite products of matrices, we prove that, under assumptions on the parameters, these functions can be extended by continuity on [a,b], with f'=p and f''=s .
},
author = {Merrien, Jean-Louis},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
language = {eng},
month = {3},
number = {1},
pages = {55-65},
publisher = {EDP Sciences},
title = {Interpolants d'Hermite C2 obtenus par subdivision},
url = {http://eudml.org/doc/197533},
volume = {33},
year = {2010},
}
TY - JOUR
AU - Merrien, Jean-Louis
TI - Interpolants d'Hermite C2 obtenus par subdivision
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 33
IS - 1
SP - 55
EP - 65
AB -
We propose a two point subdivision scheme with parameters to draw curves that satisfy Hermite conditions at both ends of [a,b]. We build three functions f,p and s on dyadic numbers and, using infinite products of matrices, we prove that, under assumptions on the parameters, these functions can be extended by continuity on [a,b], with f'=p and f''=s .
LA - eng
UR - http://eudml.org/doc/197533
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.