Un problème Spectral Issu d'un Couplage Elasto-Acoustique

Mario Durán; Jean-Claude Nédélec

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 34, Issue: 4, page 835-857
  • ISSN: 0764-583X

Abstract

top
We are interested in the theoretical study of a spectral problem arising in a physical situation, namely interactions of fluid-solid type structure. More precisely, we study the existence of solutions for a quadratic eigenvalue problem, which describes the vibrations of a system made up of two elastic bodies, where a slip is allowed on their interface and which surround a cavity full of an inviscid and slightly compressible fluid. The problem shall be treated like a generalized eigenvalue problem. Thus by using some functional analysis results, we deduce the existence of solutions and prove a spectral asymptotic behavior property, which allows us to compare the spectrum of this coupled model and the spectrum associated to the problem without transmission between the fluid-solid media.

How to cite

top

Durán, Mario, and Nédélec, Jean-Claude. "Un problème Spectral Issu d'un Couplage Elasto-Acoustique." ESAIM: Mathematical Modelling and Numerical Analysis 34.4 (2010): 835-857. <http://eudml.org/doc/197543>.

@article{Durán2010,
abstract = { We are interested in the theoretical study of a spectral problem arising in a physical situation, namely interactions of fluid-solid type structure. More precisely, we study the existence of solutions for a quadratic eigenvalue problem, which describes the vibrations of a system made up of two elastic bodies, where a slip is allowed on their interface and which surround a cavity full of an inviscid and slightly compressible fluid. The problem shall be treated like a generalized eigenvalue problem. Thus by using some functional analysis results, we deduce the existence of solutions and prove a spectral asymptotic behavior property, which allows us to compare the spectrum of this coupled model and the spectrum associated to the problem without transmission between the fluid-solid media. },
author = {Durán, Mario, Nédélec, Jean-Claude},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Couplage élasto-acoustique; problème quadratique de valeurs propres.},
language = {eng},
month = {3},
number = {4},
pages = {835-857},
publisher = {EDP Sciences},
title = {Un problème Spectral Issu d'un Couplage Elasto-Acoustique},
url = {http://eudml.org/doc/197543},
volume = {34},
year = {2010},
}

TY - JOUR
AU - Durán, Mario
AU - Nédélec, Jean-Claude
TI - Un problème Spectral Issu d'un Couplage Elasto-Acoustique
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 4
SP - 835
EP - 857
AB - We are interested in the theoretical study of a spectral problem arising in a physical situation, namely interactions of fluid-solid type structure. More precisely, we study the existence of solutions for a quadratic eigenvalue problem, which describes the vibrations of a system made up of two elastic bodies, where a slip is allowed on their interface and which surround a cavity full of an inviscid and slightly compressible fluid. The problem shall be treated like a generalized eigenvalue problem. Thus by using some functional analysis results, we deduce the existence of solutions and prove a spectral asymptotic behavior property, which allows us to compare the spectrum of this coupled model and the spectrum associated to the problem without transmission between the fluid-solid media.
LA - eng
KW - Couplage élasto-acoustique; problème quadratique de valeurs propres.
UR - http://eudml.org/doc/197543
ER -

References

top
  1. H. Brezis, Analyse Fonctionnelle. Masson, Paris (1983).  
  2. C. Conca and M. Durán, On some class of elliptic spectral problems. Rapport interne, Facultad de Matemáticas, Universidad Católica de Chile, PUC-FM/99-07 (1999).  
  3. D. de Figueiredo, Positive solutions of semilinear elliptic problems. Differential Equations Proceedings, Lect. Notes Math.957 (1982) 34-84.  
  4. N. Dunfort and J.T. Schwartz, Linear Operators. Part II: Spectral Theory. Wiley-Interscience, New-York (1964).  
  5. M. Durán, Étude théorique et numérique de quelques problèmes de type fluide-solide, Partie I. Thèse de doctorat à l'École Polytechnique, Paris (1996).  
  6. M. Durán, Mathematical and numerical analysis of an elastic-acoustic coupling, in Proceeding of Second ECCOMAS Conference on Numerical Methods in Engineering, J. Wiley & Sons Ltd. (1996) 888-893.  
  7. V. Hutson and J.S. Pym, Applications of Functional Analysis and Operator Theory. Academic Press, London (1980).  
  8. T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1976).  
  9. F. Lene and D. Leguillon, Étude de l'influence d'un glissement entre les constituants d'un matériau composite sur ses coefficients de comportements effectifs. J. Mécanique20 (1981) 509-536.  
  10. J. Necas, Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris (1967).  
  11. P.-A. Raviart and J.-M. Thomas, Introduction à l'Analyse Numérique des Equations aux Dérivées Partielles. Masson, Paris (1983).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.