Un problème Spectral Issu d'un Couplage Elasto-Acoustique
Mario Durán; Jean-Claude Nédélec
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 34, Issue: 4, page 835-857
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topDurán, Mario, and Nédélec, Jean-Claude. "Un problème Spectral Issu d'un Couplage Elasto-Acoustique." ESAIM: Mathematical Modelling and Numerical Analysis 34.4 (2010): 835-857. <http://eudml.org/doc/197543>.
@article{Durán2010,
abstract = {
We are interested in the theoretical study of a spectral problem
arising in a physical situation, namely interactions of fluid-solid
type structure. More precisely, we study the existence of solutions
for a quadratic eigenvalue problem, which describes the vibrations of a
system made up of two elastic bodies, where a slip is allowed on their
interface and which surround a cavity full of an inviscid
and slightly compressible fluid. The problem shall be treated like a
generalized eigenvalue problem. Thus by using some functional analysis
results, we deduce the existence of solutions and prove a spectral
asymptotic behavior property, which allows us to compare the spectrum
of this coupled model and the spectrum associated to the problem without
transmission between the fluid-solid media.
},
author = {Durán, Mario, Nédélec, Jean-Claude},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Couplage élasto-acoustique; problème quadratique de valeurs propres.},
language = {eng},
month = {3},
number = {4},
pages = {835-857},
publisher = {EDP Sciences},
title = {Un problème Spectral Issu d'un Couplage Elasto-Acoustique},
url = {http://eudml.org/doc/197543},
volume = {34},
year = {2010},
}
TY - JOUR
AU - Durán, Mario
AU - Nédélec, Jean-Claude
TI - Un problème Spectral Issu d'un Couplage Elasto-Acoustique
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 4
SP - 835
EP - 857
AB -
We are interested in the theoretical study of a spectral problem
arising in a physical situation, namely interactions of fluid-solid
type structure. More precisely, we study the existence of solutions
for a quadratic eigenvalue problem, which describes the vibrations of a
system made up of two elastic bodies, where a slip is allowed on their
interface and which surround a cavity full of an inviscid
and slightly compressible fluid. The problem shall be treated like a
generalized eigenvalue problem. Thus by using some functional analysis
results, we deduce the existence of solutions and prove a spectral
asymptotic behavior property, which allows us to compare the spectrum
of this coupled model and the spectrum associated to the problem without
transmission between the fluid-solid media.
LA - eng
KW - Couplage élasto-acoustique; problème quadratique de valeurs propres.
UR - http://eudml.org/doc/197543
ER -
References
top- H. Brezis, Analyse Fonctionnelle. Masson, Paris (1983).
- C. Conca and M. Durán, On some class of elliptic spectral problems. Rapport interne, Facultad de Matemáticas, Universidad Católica de Chile, PUC-FM/99-07 (1999).
- D. de Figueiredo, Positive solutions of semilinear elliptic problems. Differential Equations Proceedings, Lect. Notes Math.957 (1982) 34-84.
- N. Dunfort and J.T. Schwartz, Linear Operators. Part II: Spectral Theory. Wiley-Interscience, New-York (1964).
- M. Durán, Étude théorique et numérique de quelques problèmes de type fluide-solide, Partie I. Thèse de doctorat à l'École Polytechnique, Paris (1996).
- M. Durán, Mathematical and numerical analysis of an elastic-acoustic coupling, in Proceeding of Second ECCOMAS Conference on Numerical Methods in Engineering, J. Wiley & Sons Ltd. (1996) 888-893.
- V. Hutson and J.S. Pym, Applications of Functional Analysis and Operator Theory. Academic Press, London (1980).
- T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1976).
- F. Lene and D. Leguillon, Étude de l'influence d'un glissement entre les constituants d'un matériau composite sur ses coefficients de comportements effectifs. J. Mécanique20 (1981) 509-536.
- J. Necas, Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris (1967).
- P.-A. Raviart and J.-M. Thomas, Introduction à l'Analyse Numérique des Equations aux Dérivées Partielles. Masson, Paris (1983).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.