Patterns and Waves Generated by a Subcritical Instability in Systems with a Conservation Law under the Action of a Global Feedback Control
Y. Kanevsky; A.A. Nepomnyashchy
Mathematical Modelling of Natural Phenomena (2010)
- Volume: 6, Issue: 1, page 188-208
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topReferences
top- D. Casini, G. D’Alessandro, A. Politi. Soft turbulence in multimode lasers. Phys. Rev. A, 55 (1997), 751–760.
- S. Chávez Cerda, S.B. Cavalcanti, J.M. Hickmann. A variational approach of nonlinear dissipative pulse propagation. Eur. Phys. J. D, 1 (1998), 313–316.
- P. Coullet, S. Fauve. Propagative phase dynamics for systems with Galilean invariance. Phys. Rev. Lett., 55 (1985), 2857–2859.
- P. Coullet, G. Iooss. Instabilities of one-dimensional cellular patterns. Phys. Rev. Lett., 64 (1990), 866–869.
- S.M. Cox, P.C. Matthews. Instability and localisation of patterns due to a conserved quantity. Physica D, 175 (2003), 196–219.
- A.A. Golovin, S.H. Davis, P.W. Voorhees. Self-organization of quantum dots in epitaxially strained solid films. Phys. Rev. E, 68 (2003), 056203.
- A.A. Golovin, Y. Kanevsky, A.A. Nepomnyashchy. Feedback control of subcritical Turing instability with zero mode. Phys. Rev. E, 79 (2009), 046218.
- A.A. Golovin, A.A. Nepomnyashchy. Feedback control of subcritical oscillatory instabilities. Phys. Rev. E, 73 (2006), 046212.
- A.A. Golovin, A.A. Nepomnyashchy, L.M. Pismen. Interaction between short-scale Marangoni convection and long-scale deformational instability. Phys. Fluids, 6 (1994), 34–47.
- A.A. Golovin, A.A. Nepomnyashchy, L.M. Pismen. Nonlinear evolution and secondary instabilities of Marangoni convection in a liquid-gas system with deformable interface. J. Fluid Mech., 341 (1997), 317–341.
- Y. Kanevsky, A.A. Nepomnyashchy. Stability and nonlinear dynamics of solitary waves generated by subcritical oscillatory instability under the action of feedback control. Phys. Rev. E, 76 (2007), 066305.
- Y. Kanevsky, A.A. Nepomnyashchy. Dynamics of solitary waves generated by subcritical instabiity under the action of delayed feedback control. Physica D, (2009), DOI: . URI10.1016/j.physd.2009.10.007
- N. Komarova, A.C. Newell. Nonlinear dynamics of sandbanks and sandwaves. J. Fluid Mech., 415 (2000), 285–321.
- B.A. Malomed. Variational methods in nonlinear fiber optics and related fields. Progress in Optics, 43 (2002), 69–191.
- P.C. Matthews, S.M. Cox. One-dimensional pattern formation with Galilean invariance near a stationary bifurcation. Phys. Rev. E, 62 (2000), R1473–R1476.
- P.C. Matthews, S.M. Cox. Pattern formation with a conservation law. Nonlinearity, 13 (2000), 1293–1320.
- A.A. Nepomnyashchy, A.A. Golovin, V. Gubareva, V. Panfilov. Global feedback control of a long-wave morphological instability. Physica D, 199 (2004), 61–81.
- A.C. Newell, J.A. Whitehead. Finite amplitude convection. J. Fluid Mech., 38 (1969), 279–303.
- B.Y. Rubinstein, A.A. Nepomnyashchy, A.A. Golovin. Stability of localized solutions in a subcritically unstable pattern-forming system under a global delayed control. Phys. Rev. E, 75 (2007), 046213.
- W. Schöpf, L. Kramer. Small-amplitude periodic and chaotic solutions of the complex Ginzburg-Landau equation for a subcritical bifurcation. Phys. Rev. Lett., 66 (1991), 2316–2319.
- M. Sheintuch, O. Nekhamkina. Analysis of front interaction and control in stationary patterns of reaction-diffusion systems. Phys. Rev. E, 63 (2001), 056120.
- V. Skarka, N.B. Aleksić. Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations. Phys. Rev. Lett., 96 (2006), 013903.
- L.G. Stanton, A.A. Golovin. Global feedback control for pattern-forming systems. Phys. Rev. E, 76 (2007), 036210.
- E.N. Tsoy, A. Ankiewicz, N. Akhmediev. Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation. Phys. Rev. E, 73 (2006), 036621.