Mechanisms of Cell Motion in Confined Geometries
Mathematical Modelling of Natural Phenomena (2010)
- Volume: 5, Issue: 1, page 84-105
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topHawkins, R. J., and Voituriez, R.. "Mechanisms of Cell Motion in Confined Geometries." Mathematical Modelling of Natural Phenomena 5.1 (2010): 84-105. <http://eudml.org/doc/197621>.
@article{Hawkins2010,
abstract = {We present a simple mechanism of cell motility in a confined geometry, inspired by recent
motility assays in microfabricated channels. This mechanism relies mainly on the coupling
of actin polymerisation at the cell membrane to geometric confinement. We first show
analytically using a minimal model of polymerising viscoelastic gel confined in a narrow
channel that spontaneous motion occurs due to polymerisation alone. Interestingly, this
mechanism does not require specific adhesion with the channel walls, and yields velocities
potentially larger than the polymerisation velocity of the gel. We then study the effect
of the contractile activity of myosin motors, and show that whilst it is not necessary to
induce motion, it quantitatively increases the velocity of motion in the polymerisation
mechanism we describe. Our model qualitatively accounts for recent experiments which show
that cells without specific adhesion proteins are motile only in confined environments
while they are unable to move on a flat surface. It also constitutes a first step in the
study of cell migration in more complex confined geometries such as living tissues.},
author = {Hawkins, R. J., Voituriez, R.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {cell motility; active gel; theory; hydrodynamics},
language = {eng},
month = {2},
number = {1},
pages = {84-105},
publisher = {EDP Sciences},
title = {Mechanisms of Cell Motion in Confined Geometries},
url = {http://eudml.org/doc/197621},
volume = {5},
year = {2010},
}
TY - JOUR
AU - Hawkins, R. J.
AU - Voituriez, R.
TI - Mechanisms of Cell Motion in Confined Geometries
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/2//
PB - EDP Sciences
VL - 5
IS - 1
SP - 84
EP - 105
AB - We present a simple mechanism of cell motility in a confined geometry, inspired by recent
motility assays in microfabricated channels. This mechanism relies mainly on the coupling
of actin polymerisation at the cell membrane to geometric confinement. We first show
analytically using a minimal model of polymerising viscoelastic gel confined in a narrow
channel that spontaneous motion occurs due to polymerisation alone. Interestingly, this
mechanism does not require specific adhesion with the channel walls, and yields velocities
potentially larger than the polymerisation velocity of the gel. We then study the effect
of the contractile activity of myosin motors, and show that whilst it is not necessary to
induce motion, it quantitatively increases the velocity of motion in the polymerisation
mechanism we describe. Our model qualitatively accounts for recent experiments which show
that cells without specific adhesion proteins are motile only in confined environments
while they are unable to move on a flat surface. It also constitutes a first step in the
study of cell migration in more complex confined geometries such as living tissues.
LA - eng
KW - cell motility; active gel; theory; hydrodynamics
UR - http://eudml.org/doc/197621
ER -
References
top- B. Alberts. Molecular biology of the cell, 4th ed., Garland Science, New York, 2002.
- A. Bernheim-Groswasser, S. Wiesner, R. M. Golsteyn, M. F. Carlier C. Sykes. The dynamics of actin-based motility depend on surface parameters, Nature, 417 (2002), No. 6886, 308–311
- A. C. Callan-Jones, J.-F. Joanny J. Prost. Viscous-fingering-like instability of cell fragments, Phys. Rev. Lett., 100 (2008), 258106
- Y. Calle, S. Burns, A. J. Thrasher G. E. Jones. The leukocyte podosome., Eur. J. Cell. Biol., 85 (2006), No. 3-4, 151–157
- C. Le Clainche, M.-F. Carlier. Regulation of actin assembly associated with protrusion and adhesion in cell migration., Physiol. Rev., 88, (2008), No. 2, 489–513.
- M. Dogterom, M.E. Janson, C. Faivre-Moskalenko, A. van der Horst, J.W.J. Kerssemakers, C. Tanase B.M. Mulder. Force generation by polymerizing microtubules, Applied Physics A: Materials Science & Processing, 75 (2002), No. 2, 331–336
- C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein John O. Kessler. Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., 93 (2004), No. 9, 098103
- G. Faure-André, P. Vargas, M.-I. Yuseff, M. Heuzé, J. Diaz, D. Lankar, V. Steri, J. Manry, S. Hugues, F. Vascotto, J. Boulanger, G. Raposo, M.-R. Bono, M. Rosemblatt, M. Piel A.-M. Lennon-Duménil. Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain., Science, 322 (2008), No. 5908, 1705–1710
- F. Gerbal, P. Chaikin, Y. Rabin J. Prost. An elastic analysis of listeria monocytogenes propulsion., Biophys. J., 79 (2000), No. 5, 2259–2275
- P. G. de Gennes, J. Prost. The Physics of Liquid Crystals. Oxford. Univ. Press, Oxford, 1993.
- Y. Hatwalne, S. Ramaswamy, M. Rao R. A. Simha. Rheology of active-particle suspensions., Phys. Rev. Lett., 92 (2004), No. 11, 118101
- R. J. Hawkins, M. Piel, G. Faure-Andre, A. M. Lennon-Dumenil, J. F. Joanny, J. Prost R. Voituriez. Pushing off the walls: a mechanism of cell motility in confinement., Phys. Rev. Lett., 102 (2009), No. 5, 058103
- S. F. G. van Helden, D. J. E. B. Krooshoop, K. C. M. Broers, R. A. P. Raymakers, C. G. Figdor F. N. van Leeuwen. A critical role for prostaglandin e2 in podosome dissolution and induction of high-speed migration during dendritic cell maturation., J. Immunol., 177 (2006), No. 3, 1567–1574
- F. Julicher, K. Kruse, J. Prost J. F. Joanny. Active behavior of the cytoskeleton, Physics Reports, 449 (2007), No. 1-3, 3–28
- K. Kruse, J. F. Joanny, F. Jülicher, J. Prost K. Sekimoto. Asters, vortices, and rotating spirals in active gels of polar filaments., Phys. Rev. Lett., 92 (2004), No. 7, 078101
- K. Kruse, J. F. Joanny, F. Jülicher, J. Prost K. Sekimoto. Generic theory of active polar gels: a paradigm for cytoskeletal dynamics., Eur. Phys. J. E Soft Matter, 16 (2005), No. 1Cell migration, 5–16
- K. Kruse, J. F. Joanny, F. Jülicher J. Prost. Contractility and retrograde flow in lamellipodium motion., Phys Biol, 3 (2006), No. 2, 130–137
- T. Lämmermann, B. L. Bader, S. J. Monkley, T. Worbs, R. Wedlich-Söldner, K. Hirsch, M. Keller, R. Förster, D. R. Critchley, R. Fässler M. Sixt. Rapid leukocyte migration by integrin-independent flowing and squeezing., Nature, 453 (2008), No. 7191, 51–55
- R. Larson. Constitutive equations for polymer melts and solutions. Butterworth-Heinemann, 1998.
- T. B. Liverpool M. C. Marchetti. Instabilities of isotropic solutions of active polar filaments., Phys Rev Lett, 90 (2003), No. 13, 138102
- S. E. Malawista A. de Boisfleury Chevance. Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes (pmn) in the presence of edta: Pmn in close quarters require neither leukocyte integrins nor external divalent cations., Proc. Natl. Acad. Sci. USA, 94 (1997), No. 21, 11577–11582
- D. Marenduzzo, E. Orlandini, M. E. Cates J. M. Yeomans. Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice boltzmann simulations, Phys. Rev. E, 76 (2007), No. 3, 031921
- D. Marenduzzo, E. Orlandini, M. E. Cates J. M. Yeomans. Lattice boltzmann simulations of spontaneous flow in active liquid crystals: The role of boundary conditions, J. Non-Newton. Fluid Mech., 149 (2008), no. 1-3, 56–62
- A. Mogilner G. Oster. Cell motility driven by actin polymerization, Biophys J., 71 (1996), no. 6, 3030–3045
- V. Narayan, S. Ramaswamy N. Menon. Long-lived giant number fluctuations in a swarming granular nematic, Science, 317 (2007), No. 5834, 105–108
- F. J. Nedelec, T. Surrey, A. C. Maggs S. Leibler. Self-organization of microtubules and motors, Nature, 389 (1997), No. 6648, 305–308
- T. D. Pollard G. G. Borisy. Cellular motility driven by assembly and disassembly of actin filaments., Cell, 112 (2003), No. 4, 453–465
- J. M. Serrador, M. Nieto F. Sánchez-Madrid. Cytoskeletal rearrangement during migration and activation of t lymphocytes., Trends. Cell. Biol., 9 (1999), No. 6, 228–233
- R. A. Simha S. Ramaswamy. Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles., Phys Rev Lett, 89 (2002), No. 5, 058101
- J. A. Theriot T. J. Mitchison. Actin microfilament dynamics in locomoting cells., Nature, 352 (1991), No. 6331, 126–131
- J. Toner, Y. Tu S. Ramaswamy. Hydrodynamics and phases of flocks., Annals of Physics, 318 (2005), No. 1Cell migration, 170–244
- R. Voituriez, J. F. Joanny J. Prost. Spontaneous flow transition in active polar gels, Europhys. Lett., 70 (2005), No. 3, 404–410
- R. Voituriez, J. F. Joanny J. Prost. Generic phase diagram of active polar films., Phys. Rev. Lett., 96 (2006), No. 2, 028102
- P. T. Yam, C. A. Wilson, L. Ji, B. Hebert, E. L. Barnhart, N. A. Dye, P. W. Wiseman, G. Danuser J. A. Theriot. Actin myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility, The Journal of Cell Biology, 178 (2007), No. 7, 1207–1221
- A. Zumdieck, R. Voituriez, J. Prost J. F. Joanny. Spontaneous flow of active polar gels in undulated channels, Faraday Discuss., 139 (2008), 369
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.