Mechanisms of Cell Motion in Confined Geometries

R. J. Hawkins; R. Voituriez

Mathematical Modelling of Natural Phenomena (2010)

  • Volume: 5, Issue: 1, page 84-105
  • ISSN: 0973-5348

Abstract

top
We present a simple mechanism of cell motility in a confined geometry, inspired by recent motility assays in microfabricated channels. This mechanism relies mainly on the coupling of actin polymerisation at the cell membrane to geometric confinement. We first show analytically using a minimal model of polymerising viscoelastic gel confined in a narrow channel that spontaneous motion occurs due to polymerisation alone. Interestingly, this mechanism does not require specific adhesion with the channel walls, and yields velocities potentially larger than the polymerisation velocity of the gel. We then study the effect of the contractile activity of myosin motors, and show that whilst it is not necessary to induce motion, it quantitatively increases the velocity of motion in the polymerisation mechanism we describe. Our model qualitatively accounts for recent experiments which show that cells without specific adhesion proteins are motile only in confined environments while they are unable to move on a flat surface. It also constitutes a first step in the study of cell migration in more complex confined geometries such as living tissues.

How to cite

top

Hawkins, R. J., and Voituriez, R.. "Mechanisms of Cell Motion in Confined Geometries." Mathematical Modelling of Natural Phenomena 5.1 (2010): 84-105. <http://eudml.org/doc/197621>.

@article{Hawkins2010,
abstract = {We present a simple mechanism of cell motility in a confined geometry, inspired by recent motility assays in microfabricated channels. This mechanism relies mainly on the coupling of actin polymerisation at the cell membrane to geometric confinement. We first show analytically using a minimal model of polymerising viscoelastic gel confined in a narrow channel that spontaneous motion occurs due to polymerisation alone. Interestingly, this mechanism does not require specific adhesion with the channel walls, and yields velocities potentially larger than the polymerisation velocity of the gel. We then study the effect of the contractile activity of myosin motors, and show that whilst it is not necessary to induce motion, it quantitatively increases the velocity of motion in the polymerisation mechanism we describe. Our model qualitatively accounts for recent experiments which show that cells without specific adhesion proteins are motile only in confined environments while they are unable to move on a flat surface. It also constitutes a first step in the study of cell migration in more complex confined geometries such as living tissues.},
author = {Hawkins, R. J., Voituriez, R.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {cell motility; active gel; theory; hydrodynamics},
language = {eng},
month = {2},
number = {1},
pages = {84-105},
publisher = {EDP Sciences},
title = {Mechanisms of Cell Motion in Confined Geometries},
url = {http://eudml.org/doc/197621},
volume = {5},
year = {2010},
}

TY - JOUR
AU - Hawkins, R. J.
AU - Voituriez, R.
TI - Mechanisms of Cell Motion in Confined Geometries
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/2//
PB - EDP Sciences
VL - 5
IS - 1
SP - 84
EP - 105
AB - We present a simple mechanism of cell motility in a confined geometry, inspired by recent motility assays in microfabricated channels. This mechanism relies mainly on the coupling of actin polymerisation at the cell membrane to geometric confinement. We first show analytically using a minimal model of polymerising viscoelastic gel confined in a narrow channel that spontaneous motion occurs due to polymerisation alone. Interestingly, this mechanism does not require specific adhesion with the channel walls, and yields velocities potentially larger than the polymerisation velocity of the gel. We then study the effect of the contractile activity of myosin motors, and show that whilst it is not necessary to induce motion, it quantitatively increases the velocity of motion in the polymerisation mechanism we describe. Our model qualitatively accounts for recent experiments which show that cells without specific adhesion proteins are motile only in confined environments while they are unable to move on a flat surface. It also constitutes a first step in the study of cell migration in more complex confined geometries such as living tissues.
LA - eng
KW - cell motility; active gel; theory; hydrodynamics
UR - http://eudml.org/doc/197621
ER -

References

top
  1. B. Alberts. Molecular biology of the cell, 4th ed., Garland Science, New York, 2002.  
  2. A. Bernheim-Groswasser, S. Wiesner, R. M. Golsteyn, M. F. Carlier C. Sykes. The dynamics of actin-based motility depend on surface parameters, Nature, 417 (2002), No. 6886, 308–311 
  3. A. C. Callan-Jones, J.-F. Joanny J. Prost. Viscous-fingering-like instability of cell fragments, Phys. Rev. Lett., 100 (2008), 258106 
  4. Y. Calle, S. Burns, A. J. Thrasher G. E. Jones. The leukocyte podosome., Eur. J. Cell. Biol., 85 (2006), No. 3-4, 151–157 
  5. C. Le Clainche, M.-F. Carlier. Regulation of actin assembly associated with protrusion and adhesion in cell migration., Physiol. Rev., 88, (2008), No. 2, 489–513.  
  6. M. Dogterom, M.E. Janson, C. Faivre-Moskalenko, A. van der Horst, J.W.J. Kerssemakers, C. Tanase B.M. Mulder. Force generation by polymerizing microtubules, Applied Physics A: Materials Science & Processing, 75 (2002), No. 2, 331–336 
  7. C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein John O. Kessler. Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., 93 (2004), No. 9, 098103 
  8. G. Faure-André, P. Vargas, M.-I. Yuseff, M. Heuzé, J. Diaz, D. Lankar, V. Steri, J. Manry, S. Hugues, F. Vascotto, J. Boulanger, G. Raposo, M.-R. Bono, M. Rosemblatt, M. Piel A.-M. Lennon-Duménil. Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain., Science, 322 (2008), No. 5908, 1705–1710 
  9. F. Gerbal, P. Chaikin, Y. Rabin J. Prost. An elastic analysis of listeria monocytogenes propulsion., Biophys. J., 79 (2000), No. 5, 2259–2275 
  10. P. G. de Gennes, J. Prost. The Physics of Liquid Crystals. Oxford. Univ. Press, Oxford, 1993.  
  11. Y. Hatwalne, S. Ramaswamy, M. Rao R. A. Simha. Rheology of active-particle suspensions., Phys. Rev. Lett., 92 (2004), No. 11, 118101 
  12. R. J. Hawkins, M. Piel, G. Faure-Andre, A. M. Lennon-Dumenil, J. F. Joanny, J. Prost R. Voituriez. Pushing off the walls: a mechanism of cell motility in confinement., Phys. Rev. Lett., 102 (2009), No. 5, 058103 
  13. S. F. G. van Helden, D. J. E. B. Krooshoop, K. C. M. Broers, R. A. P. Raymakers, C. G. Figdor F. N. van Leeuwen. A critical role for prostaglandin e2 in podosome dissolution and induction of high-speed migration during dendritic cell maturation., J. Immunol., 177 (2006), No. 3, 1567–1574 
  14. F. Julicher, K. Kruse, J. Prost J. F. Joanny. Active behavior of the cytoskeleton, Physics Reports, 449 (2007), No. 1-3, 3–28 
  15. K. Kruse, J. F. Joanny, F. Jülicher, J. Prost K. Sekimoto. Asters, vortices, and rotating spirals in active gels of polar filaments., Phys. Rev. Lett., 92 (2004), No. 7, 078101 
  16. K. Kruse, J. F. Joanny, F. Jülicher, J. Prost K. Sekimoto. Generic theory of active polar gels: a paradigm for cytoskeletal dynamics., Eur. Phys. J. E Soft Matter, 16 (2005), No. 1Cell migration, 5–16 
  17. K. Kruse, J. F. Joanny, F. Jülicher J. Prost. Contractility and retrograde flow in lamellipodium motion., Phys Biol, 3 (2006), No. 2, 130–137 
  18. T. Lämmermann, B. L. Bader, S. J. Monkley, T. Worbs, R. Wedlich-Söldner, K. Hirsch, M. Keller, R. Förster, D. R. Critchley, R. Fässler M. Sixt. Rapid leukocyte migration by integrin-independent flowing and squeezing., Nature, 453 (2008), No. 7191, 51–55 
  19. R. Larson. Constitutive equations for polymer melts and solutions. Butterworth-Heinemann, 1998.  
  20. T. B. Liverpool M. C. Marchetti. Instabilities of isotropic solutions of active polar filaments., Phys Rev Lett, 90 (2003), No. 13, 138102 
  21. S. E. Malawista A. de Boisfleury Chevance. Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes (pmn) in the presence of edta: Pmn in close quarters require neither leukocyte integrins nor external divalent cations., Proc. Natl. Acad. Sci. USA, 94 (1997), No. 21, 11577–11582 
  22. D. Marenduzzo, E. Orlandini, M. E. Cates J. M. Yeomans. Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice boltzmann simulations, Phys. Rev. E, 76 (2007), No. 3, 031921 
  23. D. Marenduzzo, E. Orlandini, M. E. Cates J. M. Yeomans. Lattice boltzmann simulations of spontaneous flow in active liquid crystals: The role of boundary conditions, J. Non-Newton. Fluid Mech., 149 (2008), no. 1-3, 56–62 
  24. A. Mogilner G. Oster. Cell motility driven by actin polymerization, Biophys J., 71 (1996), no. 6, 3030–3045 
  25. V. Narayan, S. Ramaswamy N. Menon. Long-lived giant number fluctuations in a swarming granular nematic, Science, 317 (2007), No. 5834, 105–108 
  26. F. J. Nedelec, T. Surrey, A. C. Maggs S. Leibler. Self-organization of microtubules and motors, Nature, 389 (1997), No. 6648, 305–308 
  27. T. D. Pollard G. G. Borisy. Cellular motility driven by assembly and disassembly of actin filaments., Cell, 112 (2003), No. 4, 453–465 
  28. J. M. Serrador, M. Nieto F. Sánchez-Madrid. Cytoskeletal rearrangement during migration and activation of t lymphocytes., Trends. Cell. Biol., 9 (1999), No. 6, 228–233 
  29. R. A. Simha S. Ramaswamy. Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles., Phys Rev Lett, 89 (2002), No. 5, 058101 
  30. J. A. Theriot T. J. Mitchison. Actin microfilament dynamics in locomoting cells., Nature, 352 (1991), No. 6331, 126–131 
  31. J. Toner, Y. Tu S. Ramaswamy. Hydrodynamics and phases of flocks., Annals of Physics, 318 (2005), No. 1Cell migration, 170–244 
  32. R. Voituriez, J. F. Joanny J. Prost. Spontaneous flow transition in active polar gels, Europhys. Lett., 70 (2005), No. 3, 404–410 
  33. R. Voituriez, J. F. Joanny J. Prost. Generic phase diagram of active polar films., Phys. Rev. Lett., 96 (2006), No. 2, 028102 
  34. P. T. Yam, C. A. Wilson, L. Ji, B. Hebert, E. L. Barnhart, N. A. Dye, P. W. Wiseman, G. Danuser J. A. Theriot. Actin myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility, The Journal of Cell Biology, 178 (2007), No. 7, 1207–1221 
  35. A. Zumdieck, R. Voituriez, J. Prost J. F. Joanny. Spontaneous flow of active polar gels in undulated channels, Faraday Discuss., 139 (2008), 369 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.