Dynamics of Stochastic Neuronal Networks and the Connections to Random Graph Theory
R. E. Lee DeVille; C. S. Peskin; J. H. Spencer
Mathematical Modelling of Natural Phenomena (2010)
- Volume: 5, Issue: 2, page 26-66
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topReferences
top- L. F. Abbott C. van Vreeswijk. Asynchronous states in networks of pulse-coupled oscillators. Phys. Rev. E, 48 (1993), No. 2, 1483–1490.
- M. Abramowitz, I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, Vol. 55, Washington, D.C., 1964.
- N. Alon, J. H. Spencer. The probabilistic method. Wiley & Sons Inc., Hoboken, NJ, 2008.
- F. Apfaltrer, C. Ly D. Tranchina. Population density methods for stochastic neurons with realistic synaptic kinetics: Firing rate dynamics and fast computational methods. Network-computation in Neural Systems, 17 (2006), No. 4, 373–418.
- M. Bennett, M. F. Schatz, H. Rockwood K. Wiesenfeld. Huygens’s clocks. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458 (2002), No. 2019, 563–579.
- Béla Bollobás. Random graphs. Cambridge Studies in Advanced Mathematics, Vol. 73, Cambridge University Press, Cambridge, 2001.
- P. C. Bressloff S. Coombes. Desynchronization, mode locking, and bursting in strongly coupled integrate-and-fire oscillators. Phys. Rev. Lett., 81 (1998), No. 10, 2168–2171.
- N. Brunel V. Hakim. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comp., 11 (1999), No. 7, 1621–1671.
- J. Buck E. Buck. Mechanism of rhythmic synchronous flashing of fireflies, Science159 (1968), No. 3821, 1319–1327.
- D. Cai, L. Tao, A. V. Rangan D. W. McLaughlin. Kinetic theory for neuronal network dynamics. Comm. Math. Sci., 4 (2006), No. 1, 97–127.
- D. Cai, L. Tao, M. Shelley D. W. McLaughlin. An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proc. Nat. Acad. Sci. USA, 101 (2004), No. 20, 7757–7762.
- S. R. Campbell, D. L. L. Wang C. Jayaprakash. Synchrony and desynchrony in integrate-and-fire oscillators. Neur. Comp., 11 (1999), No. 7, 1595–1619.
- J. H. E. Cartwright, V. M. Eguíluz, E. Hernández-García O. Piro. Dynamics of elastic excitable media. Int. J. Bif. Chaos, 9 (1999), No. 11, 2197–2202.
- C. A. Czeisler, E. Weitzman, M. C. Moore-Ede, J. C. Zimmerman R. S. Knauer. Human sleep: its duration and organization depend on its circadian phase. Science210 (1980), No. 4475, 1264–1267.
- M. de Sousa Vieira. Chaos and synchronized chaos in an earthquake model. Phys. Rev. Lett., 82 (1999), No. 1, 201–204.
- R. E. L. DeVille, C. S. Peskin. Synchrony and asynchrony in a fully stochastic neural network. Bull. Math. Bio., 70 (2008), No. 6, 1608–1633.
- B. Doiron, J. Rinzel A. Reyes. Stochastic synchronization in finite size spiking networks. Phys. Rev. E (3), 74 (2006), No. 3, 030903
- P. Erdős A. Rényi. On random graphs. I. Publ. Math. Debrecen, 6 (1959), 290–297.
- P. Erdős A. Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl., 5 (1960), 17–61.
- G. B. Ermentrout J. Rinzel. Reflected waves in an inhomogeneous excitable medium. SIAM J. Appl. Math., 56 (1996), No. 4, 1107–1128.
- W. Gerstner J. L. van Hemmen. Coherence and incoherence in a globally-coupled ensemble of pulse-emitting units. Phys. Rev. Lett., 71 (1993), No. 3, 312–315.
- L. Glass, A. L. Goldberger, M. Courtemanche A. Shrier. Nonlinear dynamics, chaos and complex cardiac arrhythmias. Proc. Roy. Soc. London Ser. A, 413 (1987), No. 1844, 9–26.
- M. R. Guevara L. Glass. Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J. Math. Bio.14 (1982), No. 1, 1–23.
- D. Hansel H. Sompolinsky. Synchronization and computation in a chaotic neural network. Phys. Rev. Lett., 68 (1992), No. 5, 718–721.
- E. Haskell, D. Q. Nykamp D. Tranchina. Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size. Network-Computation in Neural Systems, 12 (2001), No. 2, 141–174.
- C. Huygens. Horoloquium oscilatorium. Parisiis, Paris, 1673.
- R. Kapral, K. Showalter (eds.). Chemical waves and patterns. Springer, 1994.
- B. W. Knight. Dynamics of encoding in a population of neurons. J. Gen. Phys., 59 (1972), No. 6, 734–766.
- Y. Kuramoto. Chemical oscillations, waves, and turbulence. Springer Series in Synergetics, Vol. 19, Springer-Verlag, Berlin, 1984.
- Y. Kuramoto. Collective synchronization of pulse-coupled oscillators and excitable units. Phys. D, 50 (1991), No. 1, 15–30.
- T. G. Kurtz. Relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys., 57 (1972), No. 7, 2976–2978.
- T. G. Kurtz. Strong approximation theorems for density dependent Markov chains. Stoch. Proc. Appl., 6 (1977/78), No. 3, 223–240.
- Z.-H. Liu P.M. Hui. Collective signaling behavior in a networked-oscillator model. Phys. A, 383 (2007), No. 2, 714
- R. E. Mirollo S. H. Strogatz. Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math., 50 (1990), No. 6, 1645–1662.
- Z. Olami, H. J. S. Feder K. Christensen. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett., 68 (1992), No. 8, 1244–1247.
- K. Pakdaman D. Mestivier. Noise induced synchronization in a neuronal oscillator. Phys. D, 192 (2004), No. 1-2, 123–137.
- C. S. Peskin. Mathematical aspects of heart physiology. Courant Institute, New York University, New York, 1975.
- A. Pikovsky, M. Rosenblum, J. Kurths. Synchronization: A universal concept in nonlinear sciences. Cambridge University Press, 2003.
- W. Senn, R. Urbanczik. Similar nonleaky integrate-and-fire neurons with instantaneous couplings always synchronize. SIAM J. Appl. Math., 61 (2000/01), No. 4, 1143–1155(electronic).
- A. Shwartz, A. Weiss. Large deviations for performance analysis. Chapman & Hall, London, 1995.
- L. Sirovich. Dynamics of neuronal populations: eigenfunction theory; some solvable cases. Network-computation in Neural Systems, 14 (2003), No. 2, 249–272.
- L. Sirovich, A. Omrtag B. W. Knight. Dynamics of neuronal populations: The equilibrium solution. SIAM J. Appl. Math., 60 (2000), No. 6, 2009–2028.
- S. Strogatz. Sync: The emerging science of spontaneous order. Hyperion, 2003.
- C Sulem, P.-L. Sulem. The nonlinear Schrödinger equation. Applied Mathematical Sciences, Vol. 139, Springer-Verlag, New York, 1999.
- R. Temam, A. Miranville. Mathematical modeling in continuum mechanics. Cambridge University Press, Cambridge, 2005.
- D. Terman, N. Kopell A. Bose. Dynamics of two mutually coupled slow inhibitory neurons. Phys. D, 117 (1998), No. 1-4, 241–275.
- M. Tsodyks, I. Mitkov H. Sompolinsky. Pattern of synchrony in inhomogeneous networks of oscillators with pulse interactions. Phys. Rev. Lett., 71 (1993), No. 8, 1280–1283.
- J. J. Tyson, C. I. Hong, C. D. Thron B. Novak. A Simple Model of Circadian Rhythms Based on Dimerization and Proteolysis of PER and TIM. Biophys. J., 77 (1999), No. 5, 2411–2417.
- J. J. Tyson J. P. Keener. Singular perturbation theory of traveling waves in excitable media (a review). Phys. D, 32 (1988), No. 3, 327–361.
- C. van Vreeswijk, L. Abbott G. Ermentrout. When inhibition not excitation synchronizes neural firing. J. Comp. Neurosci., 1 (1994), No. 4, 313–322.
- C. van Vreeswijk H. Sompolinsky. Chaotic balance state in a model of cortical circuits. Neur. Comp., 10 (1998), No. 6, 1321–1372.
- A. T. Winfree. The geometry of biological time. Interdisciplinary Applied Mathematics, Vol. 12, Springer-Verlag, New York, 2001.