# Double Operator Integrals and Submajorization

Mathematical Modelling of Natural Phenomena (2010)

- Volume: 5, Issue: 4, page 317-339
- ISSN: 0973-5348

## Access Full Article

top## Abstract

top## How to cite

topPotapov, D., and Sukochev, F.. "Double Operator Integrals and Submajorization." Mathematical Modelling of Natural Phenomena 5.4 (2010): 317-339. <http://eudml.org/doc/197628>.

@article{Potapov2010,

abstract = {We present a user-friendly version of a double operator integration theory which still
retains a capacity for many useful applications. Using recent results from the latter
theory applied in noncommutative geometry, we derive applications to analogues of the
classical Heinz inequality, a simplified proof of a famous inequality of
Birman-Koplienko-Solomyak and also to the Connes-Moscovici inequality. Our methods are
sufficiently strong to treat these inequalities in the setting of symmetric operator norms
in general semifinite von Neumann algebras.},

author = {Potapov, D., Sukochev, F.},

journal = {Mathematical Modelling of Natural Phenomena},

keywords = {double operator integration; unitarily invariant norm inequalities; noncommutative Lp-spaces; noncommutative -spaces},

language = {eng},

month = {5},

number = {4},

pages = {317-339},

publisher = {EDP Sciences},

title = {Double Operator Integrals and Submajorization},

url = {http://eudml.org/doc/197628},

volume = {5},

year = {2010},

}

TY - JOUR

AU - Potapov, D.

AU - Sukochev, F.

TI - Double Operator Integrals and Submajorization

JO - Mathematical Modelling of Natural Phenomena

DA - 2010/5//

PB - EDP Sciences

VL - 5

IS - 4

SP - 317

EP - 339

AB - We present a user-friendly version of a double operator integration theory which still
retains a capacity for many useful applications. Using recent results from the latter
theory applied in noncommutative geometry, we derive applications to analogues of the
classical Heinz inequality, a simplified proof of a famous inequality of
Birman-Koplienko-Solomyak and also to the Connes-Moscovici inequality. Our methods are
sufficiently strong to treat these inequalities in the setting of symmetric operator norms
in general semifinite von Neumann algebras.

LA - eng

KW - double operator integration; unitarily invariant norm inequalities; noncommutative Lp-spaces; noncommutative -spaces

UR - http://eudml.org/doc/197628

ER -

## References

top- T. Ando. Comparison of norms |||f(A) − f(B) ||| and |||f(|A − B|) |||. Math. Z., 197 (1988), No. 3, 403–409.
- N. A. Azamov, A. L. Carey, P. G. Dodds, F. A. Sukochev. Operator integrals, spectral shift, and spectral flow. Canad. J. Math., 61 (2009), No. 2, 241–263.
- M. Š. Birman, L. S. Koplienko, M. Z. Solomjak. Estimates of the spectrum of a difference of fractional powers of selfadjoint operators. Izv. Vysš. Učebn. Zaved. Matematika, 154 (1975), No. 3, 3–10.
- M. S. Birman, M. Z. Solomyak. Double Stieltjes operator integrals. Problemy Mat. Fiz., (1966), No. 1, 33–67 (Russian).
- M. S. Birman, M. Z. Solomyak. Double Stieltjes operator integrals, II. Problemy Mat. Fiz., (1967), No. 2, 26–60 (Russian).
- M. S. Birman, M. Z. Solomyak. Double Stieltjes operator integrals, III. Problemy Mat. Fiz., (1973), No. 6, 27–53 (Russian).
- Yu. L. Daleckiĭ, S.G. Kreĭn. Formulas of differentiation according to a parameter of functions of Hermitian operators. Doklady Akad. Nauk SSSR (N.S.), 76 (1951), 13–16.
- Yu. L. Daleckiĭ, S.G. Kreĭn. Integration and differentiation of functions of Hermitian operators and applications to the theory of perturbations. Voronež. Gos. Univ. Trudy Sem. Funkcional. Anal., 1 (1956), 81–105.
- A. L. Carey, D. S. Potapov, F. A. Sukochev. Spectral flow is the integral of one forms on Banach manifolds of self adjoint Fredholm operators. Adv. Math, 222 (2009), 1809–1849.
- A. Connes, H. Moscovici. Transgression du caractère de Chern et cohomologie cyclique. C. R. Acad. Sci. Paris Sér. I Math., 303 (1986), No. 18, 913–918.
- P. G. Dodds, T. K. Dodds. On a submajorization inequality of T. Ando. Operator theory in function spaces and Banach lattices, Oper. Theory Adv. Appl., 75, (1995), 113–131.
- P. G. Dodds, F.A. Sukochev. Submajorisation inequalities for convex and concave functions of sums of measurable operators. Positivity, 13 (2009), No. 1, 107–124.
- I.C. Gohberg. M.G. Kreĭn. Introduction to the theory of linear nonselfadjoint operators. Translations of Mathematical Monographs, Providence, R.I., AMS, 18, 1969.
- N.J. Kalton, F.A Sukochev. Symmetric norms and spaces of operators. J. Reine Angew. Math., 621 (2008), 81–121.
- H. Kosaki. Positive definiteness of functions with applications to operator norm inequalities. Preprint, 2009.
- B. de Pagter, F. A. Sukochev. Differentiation of operator functions in non-commutative Lp-spaces. J. Funct. Anal., 212 (2004), No. 1, 28–75.
- B. de Pagter, F. A. Sukochev. Commutator estimates and R-flows in non-commutative operator spaces. Proc. Edinb. Math. Soc., 50 (2007), No. 2, 293–324.
- B. de Pagter, F. A. Sukochev, H. Witvliet. Double operator integrals. J. Funct. Anal., 192 (2002), No. 1, 52–111.
- F. Gesztesy, A. Pushnitski, B. Simon. On the Koplienko spectral shift function. I. Basics. Zh. Mat. Fiz. Anal. Geom., 4 (2008), No. 1, 63–107.
- E. Heinz. Beiträge zur Störungstheorie der Spektralzerlegung. Math. Ann., 123 (1951), 415–438.
- A. McIntosh. Heinz inequalities and perturbation of spectral families. Macquarie Mathematical Reports, 79–0006 (1979).
- G. Pisier, Q. Xu. Non-commutative Lp-spaces. Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, 1459–1517.
- D. Potapov, F. Sukochev. Lipschitz and commutator estimates in symmetric operator spaces. J. Operator Theory, 59 (2008), No. 1, 211–234.
- D. Potapov, F. Sukochev. Unbounded Fredholm modules and double operator integrals. J. Reine Angew. Math., 626 (2009), 159–185.
- I.E. Segal. A non-commutative extension of abstract integration. Annals of Mathematics, 57 (1953), 401–457.
- B. Simon. Trace ideals and their applications. Mathematical Surveys and Monographs, AMS, Providence, RI, 120 (2005).
- F. A. Sukochev, V. I. Chilin. The triangle inequality for operators that are measurable with respect to Hardy-Littlewood order. Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk, (1988), No. 4, 44–50 (Russian).
- F. A. Sukochev, V. I. Chilin. Symmetric spaces over semifinite von Neumann algebras. Soviet Math. Dokl., 42 (1991), No. 1, 97–101 (Russian).
- F. A. Sukochev, V. I. Chilin. Weak convergence in non-commutative symmetric spaces. J. Operator Theory, 31 (1994), No. 1, 35–65.
- J. von Neumann. Some matrix inequalities and metrization of matric-space. Rev. Tomsk Univ., 1 (1937), 286–300.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.