On the Influence of Discrete Adhesive Patterns for Cell Shape and Motility: A Computational Approach
C. Franco; T. Tzvetkova-Chevolleau; A. Stéphanou
Mathematical Modelling of Natural Phenomena (2010)
- Volume: 5, Issue: 1, page 56-83
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topFranco, C., Tzvetkova-Chevolleau, T., and Stéphanou, A.. "On the Influence of Discrete Adhesive Patterns for Cell Shape and Motility: A Computational Approach." Mathematical Modelling of Natural Phenomena 5.1 (2010): 56-83. <http://eudml.org/doc/197655>.
@article{Franco2010,
abstract = {In this paper, we propose a computational model to investigate the coupling between cell’s adhesions and actin fibres and how this coupling affects cell shape and stability. To accomplish that, we take into account the successive stages of adhesion maturation from adhesion precursors to focal complexes and ultimately to focal adhesions, as well as the actin fibres evolution from growing filaments, to bundles and finally contractile stress fibres.We use substrates with discrete patterns of adhesive patches, whose inter-patches distance can be modulated in order to control the location of the adhesions and the resulting fibres architecture. We then investigate the emergence of stable cell morphologies as a function of the inter-patches distance, for two different cell phenotypes generated from the model. Force generated by the stress fibres on the focal adhesions and specifically the influence of the cell contractility are also investigated.Our results suggest that adhesion lifetime and fibre growing rate are the key parameters in the emergence of stable cell morphologies and the limiting factors for the magnitude of the mean tension force from the fibres on the focal adhesions.},
author = {Franco, C., Tzvetkova-Chevolleau, T., Stéphanou, A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {motility; stress fibres; focal adhesions; micropatterned substrates; integrative modelling.; integrative modelling},
language = {eng},
month = {2},
number = {1},
pages = {56-83},
publisher = {EDP Sciences},
title = {On the Influence of Discrete Adhesive Patterns for Cell Shape and Motility: A Computational Approach},
url = {http://eudml.org/doc/197655},
volume = {5},
year = {2010},
}
TY - JOUR
AU - Franco, C.
AU - Tzvetkova-Chevolleau, T.
AU - Stéphanou, A.
TI - On the Influence of Discrete Adhesive Patterns for Cell Shape and Motility: A Computational Approach
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/2//
PB - EDP Sciences
VL - 5
IS - 1
SP - 56
EP - 83
AB - In this paper, we propose a computational model to investigate the coupling between cell’s adhesions and actin fibres and how this coupling affects cell shape and stability. To accomplish that, we take into account the successive stages of adhesion maturation from adhesion precursors to focal complexes and ultimately to focal adhesions, as well as the actin fibres evolution from growing filaments, to bundles and finally contractile stress fibres.We use substrates with discrete patterns of adhesive patches, whose inter-patches distance can be modulated in order to control the location of the adhesions and the resulting fibres architecture. We then investigate the emergence of stable cell morphologies as a function of the inter-patches distance, for two different cell phenotypes generated from the model. Force generated by the stress fibres on the focal adhesions and specifically the influence of the cell contractility are also investigated.Our results suggest that adhesion lifetime and fibre growing rate are the key parameters in the emergence of stable cell morphologies and the limiting factors for the magnitude of the mean tension force from the fibres on the focal adhesions.
LA - eng
KW - motility; stress fibres; focal adhesions; micropatterned substrates; integrative modelling.; integrative modelling
UR - http://eudml.org/doc/197655
ER -
References
top- I. Bischofs, F. Klein, D. Lehnert, M. Bastmeyer U. Schwarz. Filamentous network mechanics and active contractility determine cell and tissue shape. Biophys. J, 95 (2008), 3488–3496
- M. Block, C. Badowski, A. Millon-Fremillon, D. Bouvard, A. Bouin, E. Faurobert, D. Gerber-Scokaert, E. Planus C. Albigès-Rizo. Podosome type adhesions and focal adhesions, so alike and yet so different. Eur. J. Cell Biol., 87 (2008), 491–506
- J. Broussard, D. Webb I. Kaverina. Asymmetric focal adhesion disassembly in motile cells. Curr. Opin. Cell Biol., 20 (2008), 85–90
- H. Coskun, Y. Li M. Mackey. Ameboid cell motility: A model and inverse problem, with an application to live cell imaging data. J. Theor. Biol., 244 (2007), 169–179
- V. Deshpande>, R. McMeeking A. Evans. A bio-chemo-mechanical model for cell contractility. PNAS, 103 (2006), 14015-14020
- V. Deshpande>, R. McMeeking A. Evans. A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation. Proc. R. Soc. A, 463 (2007), 787-815
- A. Efimov, N. Schiefermeier, I. Grigoriev, M. Brown, C. Turner, J. Small I. Kaverina. Paxillin-dependent stimulation of microtubule catastrophes at focal adhesion sites. J. Cell Sci., 121 (2008), 196–204
- A. Engler, S. Sen, H. Sweeney D. Discher. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 126 (2006), 677–689
- P. Friedl K. Wolf. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer, 3 (2003), 362-374
- C. Galbraith, K. Yamada M. Sheetz. The relationship between force and focal complex development. J. Cell Biol., 159 (2002), No. 4, 695–705
- B. Geiger, J. Spatz A. Bershadsky. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol., 10 (2009), 21–33
- G. Giannone, B. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. Dobereiner, Y. Freund, G. Borisy M. Sheetz. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell, 128 (2007), 561–575
- H. Guillou, A. Depraz-Depl, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-Rizo M. Block. Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream Rac1 signaling. Exp. Cell Res., 314 (2008), 478-488
- P. Hotulainen P. Lappalainen. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol., 173 (2006), 383–394
- J. James, E. Goluch, H. Hu, C. Liu M. Mrksich. Subcellular Curvature at the Perimeter of Micropatterned Cells Influences Lamellipodial Distribution and Cell Polarity. Cell Motil. Cytoskeleton, 65 (2008), 841–852
- G. Jiang, A. Huang, Y. Cai, M. Tanase M. Sheetz. Rigidity sensing at the leading edge through αvβ3 integrins and RPTPα. Biophys. J., 90 (2006), 1804–1809
- R. Kaunas, H. Hsu. A kinematic model of stretch-induced stress fiber turnover and reorientation, J. Theor. Biol., 257 (2009), 320–330.
- E. Kuusela W. Alt. Continuum model of cell adhesion and migration. J. Math. Biol., 58 (2009), 135–161
- K. Lazopoulos, D. Stamenovic. A mathematical model of cell reorientation in response to substrate stretching. Mol. Cell. Biomech., 3 (2006), 43.
- J. Lock, B. Wehrle-Haller S. Strömblad. Cell–matrix adhesion complexes: master control machinery of cell migration. International Journal of Solids and Structures, 18 (2008), 65–76
- Y. Luo, X. Xu, T. Lele, S. Kumar D. Ingber. A multi-modular tensegrity model of an actin stress fiber. J. Biomech., 41 (2008), 2379–2387
- P. Naumanen, P. Lappalainen P. Hotulainen. Mechanisms of actin stress fibre assembly. J. Microsc., 231 (2008), 446-454
- A. Pathak, V. Deshpande, R. McMeeking A. Evans. The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J. R. Soc. Interface, 5 (2008), 507–524
- S. Pellegrin H. Mellor. Actin stress fibres. J. Cell Sci., 120 (2007), 3491–3499
- R. Rid, N. Schiefermeier, I. Grigoriev, J. Small I. Kaverina. The Last but not the Least: The Origin and Significance of Trailing Adhesions in Fibroblastic Cells. Cell Motil. Cytoskeleton, 61 (2005), 161–171
- A. Saez, M. Ghibaudo, A. Buguin, P. Silberzan B. Ladoux. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. PNAS, 104 (2007), 8281–8286
- Y. Senju H. Miyata. The role of actomyosin contractility in the formation and dynamics of actin bundles during fibroblasts spreading. J. Biochem., 145 (2008), 137-150
- J. Small, S. Auinger, M. Nemethova, S. Koestler, K. Goldie, A. Hoenger G. Resch. Unravelling the structure of the lamellipodium. J. Microsc., 231 (2008), 479-485
- D. Stamenovic. Contractile torque as a steering mechanism for orientation of adherent cells. Mol. Cell. Biomech., 2 (2005), 69.
- A. Stéphanou. A computational framework integrating cytoskeletal and adhesion dynamics for modelling cell motility. Cell Mechanics, From Single Scale-Based Models to Multiscale Modeling. Chapman & Hall / CRC Press, Ed. A. Chauvire, L.Preziosi & C. Verdier, 2009.
- A. Stéphanou, M. Chaplain P. Tracqui. A mathematical model for the dynamics of large membrane deformations of isolated fibroblasts. Bull. Math. Biol., 66 (2004), 1119–1154
- A. Stéphanou, E. Mylona, M. Chaplain P. Tracqui. A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions. J. Theor. Biol., 253 (2008), 701–716
- J. Tan, J. Tien, D. Pirone, D. Gray, K. Bhadriraju C. Chen. Cells lying on a bed of microneedles: an approach to isolate mechanical force. PNAS, 100 (2003), 1484–1489
- M. Théry, A. Pépin, E. Dressaire, Y. Chen M. Bornens. Cell Distribution of Stress Fibres in Response to the Geometry of the Adhesive Environment. Cell Motil. Cytoskeleton, 63 (2006), 341–355
- T. Tzvetkova-Chevolleau, A. Stéphanou, D. Fuard, J. Ohayon, P. Schiavone P. Tracqui. The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials, 29 (2008), 1541–1551
- M. Vicente-Manzanares, C. Choi A. Horwitz. Integrins in cell migration-the actin connection. J. Cell Sci., 122 (2009), 199–206
- H. Wolfenson, Y. Henis, B. Geiger A. Bershadsky. The heel and toe of the cell’s foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions. Cell Motil. Cytoskeleton, 66 (2009), 1017–1029
- D. Worth M. Parsons. Adhesion dynamics: Mechanisms and measurements. Int. J. Biochem. Cell Biol., 40 (2008), 2397-2409
- R. Zaidel-Bar, C. Ballestrem, Z. Kam B. Geiger. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci., 116 (2003), 4605–4613
- R. Zaidel-Bar, M. Cohen, L. Addadi B. Geiger. Hierarchical assembly of cell-matrix adhesion complexes. Biochem. Soc. Trans., 32 (2004), 416–420
- R. Zaidel-Bar, S. Itzkovitz, A. Ma’ayan, R. Iyengar B. Geiger. Functional atlas of the integrin adhesome. Nat. Cell Biol., 9 (2007), 858–867
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.