On the Optimal Control of a Class of Time-Delay System
Mathematical Modelling of Natural Phenomena (2010)
- Volume: 5, Issue: 7, page 151-155
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topBoudjenah, L., and Khelfi, M.F.. Taik, A., ed. "On the Optimal Control of a Class of Time-Delay System." Mathematical Modelling of Natural Phenomena 5.7 (2010): 151-155. <http://eudml.org/doc/197658>.
@article{Boudjenah2010,
abstract = {In this work we study the optimal control problem for a class of nonlinear time-delay
systems via paratingent equation with delayed argument. We use an equivalence theorem
between solutions of differential inclusions with time-delay and solutions of paratingent
equations with delayed argument. We study the problem of optimal control which minimizes a
certain cost function. To show the existence of optimal control, we use the main
topological properties of the set solutions of paratingent equation with delayed
argument},
author = {Boudjenah, L., Khelfi, M.F.},
editor = {Taik, A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {differential inclusion; minimization; optimal control; paratingent; time-delay},
language = {eng},
month = {8},
number = {7},
pages = {151-155},
publisher = {EDP Sciences},
title = {On the Optimal Control of a Class of Time-Delay System},
url = {http://eudml.org/doc/197658},
volume = {5},
year = {2010},
}
TY - JOUR
AU - Boudjenah, L.
AU - Khelfi, M.F.
AU - Taik, A.
TI - On the Optimal Control of a Class of Time-Delay System
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/8//
PB - EDP Sciences
VL - 5
IS - 7
SP - 151
EP - 155
AB - In this work we study the optimal control problem for a class of nonlinear time-delay
systems via paratingent equation with delayed argument. We use an equivalence theorem
between solutions of differential inclusions with time-delay and solutions of paratingent
equations with delayed argument. We study the problem of optimal control which minimizes a
certain cost function. To show the existence of optimal control, we use the main
topological properties of the set solutions of paratingent equation with delayed
argument
LA - eng
KW - differential inclusion; minimization; optimal control; paratingent; time-delay
UR - http://eudml.org/doc/197658
ER -
References
top- J. P.Aubin, A. Cellina. Differential inclusions, Springer-Verlag, 1984.
- L. Boudjenah. Existence of the solutions of the paratingent equation with delayed argument. Electron. J. Diff. Eqns., 2005 (2005), No. 14, 1–8.
- S. Dadebo, R. Luus. Optimal control of time-delay systems by dynamic programming. Optim Control Appl. Methods, 13 (1992), No. 1, 29–41.
- M.Kisielewicz. Differential inclusions and optimal control. Kluwer, Dordrecht, The Netherlands, (1991).
- Y. Kuang. Delay differential equations with applications in population dynamics. Academic Press, Boston, (1993).
- W.. ygmunt. On some properties of a certain family of solutions of the paratingent equation. Ann. Univ. Marie Curie-Sklodowska, Lublin. Polonia. Sect. A, 28 (1976), 136–141.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.