Optimal Control of a Cancer Cell Model with Delay
C. Collins; K.R. Fister; M. Williams
Mathematical Modelling of Natural Phenomena (2010)
- Volume: 5, Issue: 3, page 63-75
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topReferences
top- I. Athanassios D. Barbolosi. Optimizing drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model. Comp. Biomedical Res., 33 (2000), 211–226.
- M. Chaplain, A. Matzavinos. Mathematical modelling of spatio-temporal phenomena in tumour immunology. Tutorials in Mathematical Biosciences III; Cell Cycle, Proliferation, and Cancer, 131–183, Springer-Verlag, Berlin, 2006.
- P. C. Das, R. R. Sharma. On optimal controls for measure delay-differential equations. SIAM J. Control, 6 (1971) No. 1, 43–61.
- L. G. de Pillis, K. R. Fister, W. Gu, T. Head, K. Maples, A. Murugan, T. Neal, K. Kozai. Optimal control of mixed immunotherapy and chemotherapy of tumors. Journal of Biological Systems, 16 (2008), No. 1, 51–80.
- L.G. de Pillis, K. R. Fister, W. Gu, C. Collins, M. Daub, D. Gross, J. Moore B. Preskill. Mathematical Model Creation for Cancer Chemo-Immunotherapy. Computational and Mathematical Methods in Medicine, 10 (2009), No. 3, 165–184.
- L. G. de Pillis, K. R. Fister, W. Gu, C. Collins, M. Daub, D. Gross, J. Moore, B. Preskill. Seeking Bang-Bang Solutions of Mixed Immuno-chemotherapy of tumors. Electronic Journal of Differential Equations, (2007), No. 171, 1–24.
- R. D. Driver. Ordinary and Delay Differential Equations. Springer-Verlag, New York, 285–311, 1977.
- K. R. Fister, J. H. Donnelly. Immunotherapy: An Optimal Control Theory Approach. Mathematical Biosciences in Engineering, 2 (2005), No. 3, 499–510.
- R. Fletcher. Practical methods of optimization. Wiley and Sons, New York, 1987.
- M. I. Kamien, N. L. Schwartz. Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management, Vol. 31 of Advanced Textbooks in Economics. North-Holland, 2nd edition, 1991.
- M. Kim, S. Perry, and K. B. Woo. Quantitative approach to the deisgn of antitumor drug dosage schedule via cell cycle kinetics and systems theory. Ann. Biomed. Eng., 5 (1977), 12–33.
- D. Kirschner J. C. Panetta. Modeling immunotherapy of the tumor-immune interaction. Journal of Mathematical Biology, 35 (1998), 235–252.
- W. Liu, T. Hillen, H. I. Freedman. A Mathematical model for M-phase specific chemotherapy including the Go-phase and immunoresponse. Mathematical Biosciences and Engineering, 4 (2007), No. 2, 239-259.
- D. McKenzie. Mathematical modeling and cancer. SIAM News, 31, Jan/Feb 2004.
- J. M. Murray. Some optimality control problems in cancer chemotherapy with a toxicity limit. Mathematical Biosciences, 100 (1990), 49–67.
- L. S. Pontryagin, V. G. Boltyanksii, R. V. Gamkrelidze, E. F. Mischchenko. The Mathematical theory of optimal processes. Wiley, New York, 1962.
- G. W. Swan, T. L. Vincent. Optimal control analysis in the chemotherapy of IgG multiple myeloma. Bulletin of Mathematical Biology, 39 (1977), 317–337.
- M. Villasana, A. Radunskaya. A delay differential equation model for tumor growth. Journal of Mathematical Biology, 47 (2003), 270–294.