Hybrid Particle Swarm and Neural Network Approach for Streamflow Forecasting
Mathematical Modelling of Natural Phenomena (2010)
- Volume: 5, Issue: 7, page 132-138
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topReferences
top- Q. Duan, S. Sorooshian, V. Gupta. Effective and efficient global optimization for conceptual rainfall runoff models. Water Resour. Res, 28 (1992), 1015-1031.
- R. C. Eberhart and J. Kennedy. A new optimizer using particle swarm theory Proc. of 6th Symp. on micro machine and human science, IEEE service center, Piscataway, N.J., (1995), 39-43.
- K.L. Hsu, H.V. Gupta, S. Sorooshian. Artificial neural network modeling of the rainfall-rainoff process. Water Resour. Res., 31 (1995), No. 10, 2517-2530.
- V. Maniezzo. Genetic evolution of the topology and weight distribution of neural networks. IEEE Transaction on Neural Networks, 5 (1994), 39–53.
- K.E. Parsopoulos, M.N. Vrahatis. Recent approaches to global optimization problems through particle swarm optimization. Natural Comput., 1 (2002), No. 23, 235-306.
- D.E. Rumelhart, G.E. Hinton, R.J. Williams. Learning internal representation by error propagation. In: Rumelhart, D.E., McClelland, J.L. (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1. MIT Press, Cambridge, MA, (1986), 318-362.
- A. Salman, I. Ahmad, S. Al-Madani. Particle swarm optimization for task assignment problem. Microproc. and Microsyst., 26 (2002), No. 8, 363-371.
- R. S. Sexton, R. E. Dorsey, J. D. Johnson. Toward global optimization of neural networks: A comparison of the genetic algorithm and back propagation. Decision Support Systems, 22 (1998), 171–185.
- J.M. Yang, C.Y. Kao. A robust evolutionary algorithm for training neural networks. Neural Comput. Appl., 10 (2001), 214–230.