Individual Cell-Based Model for In-Vitro Mesothelial Invasion of Ovarian Cancer

C. Giverso; M. Scianna; L. Preziosi; N. Lo Buono; A. Funaro

Mathematical Modelling of Natural Phenomena (2010)

  • Volume: 5, Issue: 1, page 203-223
  • ISSN: 0973-5348

Abstract

top
In vitro transmesothelial migration assays of ovarian cancer cells, isolated or aggregated in multicellular spheroids, are reproduced deducing suitable Cellular Potts Models (CPM). We show that the simulations are in good agreement with the experimental evidence and that the overall process is regulated by the activity of matrix metalloproteinases (MMPs) and by the interplay of the adhesive properties of the cells with the extracellular matrix and between cells, both of the same type and of different types. In particular, the process depends on the ability of the cell to induce the loosening of cadherin-mediated junctions. Coherently with experiments, it is found that single cell invasion is more conservative with a crucial role played by MMPs. A similar important role is played in cell spheroid invasion, which in comparison is more disruptive. It achieves monofocal or multifocal characteristics according to the relative adhesion affinity among cells or between them and the mesothelial layer.

How to cite

top

Giverso, C., et al. "Individual Cell-Based Model for In-Vitro Mesothelial Invasion of Ovarian Cancer." Mathematical Modelling of Natural Phenomena 5.1 (2010): 203-223. <http://eudml.org/doc/197724>.

@article{Giverso2010,
abstract = {In vitro transmesothelial migration assays of ovarian cancer cells, isolated or aggregated in multicellular spheroids, are reproduced deducing suitable Cellular Potts Models (CPM). We show that the simulations are in good agreement with the experimental evidence and that the overall process is regulated by the activity of matrix metalloproteinases (MMPs) and by the interplay of the adhesive properties of the cells with the extracellular matrix and between cells, both of the same type and of different types. In particular, the process depends on the ability of the cell to induce the loosening of cadherin-mediated junctions. Coherently with experiments, it is found that single cell invasion is more conservative with a crucial role played by MMPs. A similar important role is played in cell spheroid invasion, which in comparison is more disruptive. It achieves monofocal or multifocal characteristics according to the relative adhesion affinity among cells or between them and the mesothelial layer.},
author = {Giverso, C., Scianna, M., Preziosi, L., Lo Buono, N., Funaro, A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {ovarian cancer metastasis; mesothelium; cellular potts model; hybrid model; cellular Potts model},
language = {eng},
month = {2},
number = {1},
pages = {203-223},
publisher = {EDP Sciences},
title = {Individual Cell-Based Model for In-Vitro Mesothelial Invasion of Ovarian Cancer},
url = {http://eudml.org/doc/197724},
volume = {5},
year = {2010},
}

TY - JOUR
AU - Giverso, C.
AU - Scianna, M.
AU - Preziosi, L.
AU - Lo Buono, N.
AU - Funaro, A.
TI - Individual Cell-Based Model for In-Vitro Mesothelial Invasion of Ovarian Cancer
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/2//
PB - EDP Sciences
VL - 5
IS - 1
SP - 203
EP - 223
AB - In vitro transmesothelial migration assays of ovarian cancer cells, isolated or aggregated in multicellular spheroids, are reproduced deducing suitable Cellular Potts Models (CPM). We show that the simulations are in good agreement with the experimental evidence and that the overall process is regulated by the activity of matrix metalloproteinases (MMPs) and by the interplay of the adhesive properties of the cells with the extracellular matrix and between cells, both of the same type and of different types. In particular, the process depends on the ability of the cell to induce the loosening of cadherin-mediated junctions. Coherently with experiments, it is found that single cell invasion is more conservative with a crucial role played by MMPs. A similar important role is played in cell spheroid invasion, which in comparison is more disruptive. It achieves monofocal or multifocal characteristics according to the relative adhesion affinity among cells or between them and the mesothelial layer.
LA - eng
KW - ovarian cancer metastasis; mesothelium; cellular potts model; hybrid model; cellular Potts model
UR - http://eudml.org/doc/197724
ER -

References

top
  1. N. Ahmed, E. W. Thomson M. A. Quinn. Epithelial - mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J. Cell. Physiol., 213 (2007), 581–588 
  2. J. Ahmedin, T. Murray, A. Samuels, A. Ghafoor, E. War M. J. Thun. Cancer statistics. Cancer J. Clin., 53 (2003), 5–26 
  3. K. M. Burleson, R. C. Casey, K. M. Skubitz, E. Pambuccian, T. R. Oegema Jr A. P. Skubitz. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynec. Oncol., 93 (2004), 170–181 
  4. K. M. Burleson, M. P. Boente, S. E. Parmabuccian A. P. Skubitz. Ovarian carcinoma spheroids disaggregate on type I collagen and invade live mesothelial cell monolayers. Clin. Exp. Metastasis, 21 (2004), 685–697 
  5. K. M. Burleson, M. P. Boente, S. E. Parmabuccian, A. P. Skubitz. Disaggregation and invasion of ovarian carcinoma ascites spheroids. J. Transl. Med., 4 (2006), 1–16.  
  6. S. A. Cannistra. Cancer of the ovary. N. Engl. J. Med.329 (1993), 1550–1559.  
  7. R. C. Casey, K. M. Burleson, K. M. Skubitz, S. E. Parmabuccian, T. J. Oegema, L. E. Ruff A. P. Skubitz. β1–integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am. J. Pathol., 159 (2001), 2071–2080 
  8. M. Egeblad Z. Werb. New functions for the matrix metalloproteinases in cancer progression. Nature, 2 (2002), 2071–2080 
  9. K. M. Feeley, M. Wells. Precursor lesions of ovarian epithelial malignancy. Histopathology, 38 (2001), 87–95.  
  10. A. Feki, P. Berardi, G. Bellingan, A. Major, K. H. Krause, P. Petignat. Dissemination of intraperitoneal ovarian cancer: Discussion of mechanisms and demonstration of lymphatic spreading in ovarian cancer model. Crit. Rev. Oncol. Hematol., 72 (2009), 1–9.  
  11. D. A. Fishman, Y. Liu, S. M. Ellerbroek M. S. Stack. Lysophosphatidic acid promotes Matrix Metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res., 61 (2001), 3194–3199 
  12. A. Funaro, E. Ortolan, P. Bovino, N. Lo Buono, G. Nacci, E. Parrotta, E. Ferrero F. Malavasi. Ectoenzymes and innate immunity: the role of human CD157 in leukocyte trafficking. Front. Biosci., 14 (2009), 929–943 
  13. J. A. Glazier, A. Balter, N. J. Poplawski. Magnetization to morphogenesis: a brief history of the Glazier–Graner–Hogeweg model. In A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions, pages 79–106. Birkaüser, 2007.  
  14. J. A. Glazier F. GranerSimulation of the differential adhesion driven rearrangement of biological cells. Physical. Rev. E., 47 (1993), 2128–2154 
  15. F. Graner J. A. Glazier. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Letters, 69 (1992), 2013–2017 
  16. H. G. E. Hentschel, T. Glimm, J. A. Glazier, S. A. Newman. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. Lond. B (2004), 1713–1722.  
  17. J. M. Kelm, N. E. Timmins, C. J. Brown, M. Fussenegger L.K. Nielsen. Method for generation of homogeneous ulticellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng., 83 (2003), 173–180 
  18. H. A. Kenny, S. Kaur, L. M. Coussens, E. Lengyel. The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J. Clin. Invest.118 (2008), 1367–1379.  
  19. K. Lessan, D. J. Aguiar, T. J. Oegema, L. Siebenson A. P. Skubitz. CD44 and β1–integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am. J. Pathol., 154 (1999), 1525–1537 
  20. J. S. Lowergrub, H. B. Frieboes, F. Jin, Y. L. Chuang, X. Li, P. Macklin, S. M. Wise, V. Cristini. Nonlinear modeling of cancer: bridging the gap between cells and tumor. Nonlinearity. In press.  
  21. A. F. M. Marée, V. A. Grieneisen P. Hogeweg. The Cellular Potts Model and biophysical properties of cells, tissues and morphogenesis. In A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions, pages 107–136. Birkaüser, Basel, Switzerland, 2007.  
  22. R. M. H. Merks J. A. Glazier. Dynamic mechanisms of blood vessel growth. Institute of Physics Publishing, 19 (2006), C1–C10 
  23. R. M. H. Merks, J. A. Glazier, A. Balter, N. J. Poplawski, M. Swat. The Glazier-Graner-Hogeweg model: extensions, future directions, and opportunities for further study. Mathematics and Biosciences in Interaction (2007), 151–167.  
  24. R. M. H. Merks J. A. Glazier. A cell-centered approach to developmental biology. Physica. A., 352 (2005), 113–130 
  25. S. E. Mutsaers. Mesothelial cells: their structure, function and role in serosal repair. Respirology, 7 (2002), 171–191 
  26. H. Naora, D. J. Montell. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat. Rev. Cancer, 5 (2005), 355–366.  
  27. M. J. Niedbala, K. Crickard R. J. Bernacki. Interactions of human ovarian tumor cells with human mesothelial cells grown on extracellular matrix. An in vitro model system for studying tumor cell adhesion and invasion. Exp. Cell. Res., 160 (1985), 499–513 
  28. N. J. Poplawski, A. Shirinifard, M. Swat J. A. Glazier. Simulation of single–species bacterical–biofilm growth using the Glazier–Graner–Hogeweg model and the CompuCell3D modeling environment. Math. Biosci. Eng., 5 (2008), 355–388 
  29. S. Patel, P. Madan, S. Getsios, M. A. Bertr C. D. Maccalman. Cadherin switching in ovarian cancer progression. Int. J. Cancer., 106 (2003), 172–177 
  30. L. Preziosi A. Tosin. Multiphase and multiscale trends in cancer modelling. Math. Model Nat. Phenomena, 4 (2009), 1–11 
  31. M. L. Puiffe, C. La Page, A. Filali–Mouhim, M. Zietarska, V. Ouellet, P. N. Toniny, M. Chevrette, D. M. Provencher A. M. Mes–Masson. Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia, 9 (2007), 820–829 
  32. N. J. Savill P. Hogeweg. Modelling morphogenesis: from single cells to crawling slugs. J. Theor. Biol., 184 (1997), 118–124 
  33. K. Sawada, A. K. Mitra, A. Reza Radjabi, V. Bhaskar, E. O. Kistner, M. Tretiakova, S. Jagadeeswaran, A. Montag, A. Becker, H. A. Kenny, M. E. Peter, V. Ramakrishnan, S. D. Yamada E. Lengyel. Loss of E-cadherin promotes ovarian cancer metastasis via α5-integrin, which is a therapeutic target. Cancer Res., 68 (2008), 2329–2339 
  34. M. Sawada, J. Shii, H. Akedo O. Tanizawa. An experimental model for ovarian tumor invasion of cultured mesothelial cell monolayer. Lab. Invest., 70 (1994), 333–338 
  35. M. Scianna, R. M. H. Merks, L. Preziosi, E. Medico. Individual cell-based models of cell scatter of ARO and MLP-29 cells in response to hepatocyte growth factor. J. Theor. Biol.260 (2009), 151–160.  
  36. K. Shield, M. L. Ackl, N. Ahnmed G. E. Rice. Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynec. Oncol., 113 (2008), 143–148 
  37. K. Shield, C. Riley, M. A. Quinn, G. E. Rice, M. L. Ackl N. Ahnmed. α2β1–integrin affects metastatic potential of ovarian carcinoma spheroids by supporting disaggregation and proteolysis. J. Carcinog., 6 (2007), 6–11 
  38. P. N. Skubitz, R. C. Bast Jr, E. A. Wayner, P. C. Letourneau M. S. Wilke. Expression of α6 and β4 integrins in serous ovarian carcinoma correlates with expression of the basement membrane protein laminin. Am. J. Pathol., 148 (1996), 1445–1461 
  39. K. Sundfeldt. Cell–cell adhesion in the normal ovary and ovarian tumors of epithelial origin; an exception to the rule. Molecular and Cellular Endocrinology, 202 (2003), 89–96.  
  40. S. Yung, F. K. Li T. M. Chan. Peritoneal mesothelial cell culture and biology. Perit. Dial. Int., 26 (2006), 162–173 
  41. F. Wang, J. So, S. Reierstad D. A. Fishman. Vascular endothelial growth factor regulated ovarian cancer invasion and migration involves expression and activation of matrix metalloproteinases. Int. J. Cancer, 118 (2006), 879–888 
  42. H. S. Wang, Y. Hung, C. H. Su, S. T. Peng, Y. J. Guo, M. C. Lai MC. CD44 cross-linking induces integrin-mediated adhesion and transendothelial migration in breast cancer cell line by up-regulation of LFA-1 (αLβ2) and VLA-4 (α4β1). Exp. Cell. Res., 304 (2005), 116–126.  
  43. Y. Zhu K. Sunfeldt. Tight junction formation in epithelial ovarian adenocarcinoma. Acta Obstetricia et Gynecologica, 86 (2007), 1011–1019 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.