The likelihood ratio test for the number of components in a mixture with Markov regime
Elisabeth Gassiat; Christine Keribin
ESAIM: Probability and Statistics (2010)
- Volume: 4, page 25-52
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topGassiat, Elisabeth, and Keribin, Christine. "The likelihood ratio test for the number of components in a mixture with Markov regime." ESAIM: Probability and Statistics 4 (2010): 25-52. <http://eudml.org/doc/197725>.
@article{Gassiat2010,
abstract = {
We study the LRT statistic for testing
a single population i.i.d. model against a mixture of two populations with Markov regime.
We prove that
the LRT statistic converges to infinity in probability
as the number of observations tends to infinity.
This is a consequence of a convergence result
of the LRT statistic for a subproblem where the parameters
are restricted to a subset of the whole parameter set.
},
author = {Gassiat, Elisabeth, Keribin, Christine},
journal = {ESAIM: Probability and Statistics},
keywords = {Likelihood ratio test; hidden Markov model; order of a mixture.; LRT statistic; mixture; Markov regime},
language = {eng},
month = {3},
pages = {25-52},
publisher = {EDP Sciences},
title = {The likelihood ratio test for the number of components in a mixture with Markov regime},
url = {http://eudml.org/doc/197725},
volume = {4},
year = {2010},
}
TY - JOUR
AU - Gassiat, Elisabeth
AU - Keribin, Christine
TI - The likelihood ratio test for the number of components in a mixture with Markov regime
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 4
SP - 25
EP - 52
AB -
We study the LRT statistic for testing
a single population i.i.d. model against a mixture of two populations with Markov regime.
We prove that
the LRT statistic converges to infinity in probability
as the number of observations tends to infinity.
This is a consequence of a convergence result
of the LRT statistic for a subproblem where the parameters
are restricted to a subset of the whole parameter set.
LA - eng
KW - Likelihood ratio test; hidden Markov model; order of a mixture.; LRT statistic; mixture; Markov regime
UR - http://eudml.org/doc/197725
ER -
References
top- L.D. Atwood, A.F. Wilson, J.E. Bailey-Wilson, J.N. Carruth and R.C. Elston, On the distribution of the likelihood ratio test statistic for a mixture of two normal distributions. Comm. Statist. Simulation Comput.25 (1996) 733-740.
- L.E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat.37 (1966) 1554-1563.
- P.J. Bickel and Y. Ritov, Inference in hidden Markov models I: Local asymptotic normality in the stationary case. Bernoulli2 (1996) 199-228.
- P.J. Bickel, Y. Ritov and T. Ryden, Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models. Annals of Stat.26 (1998) 1614-1635.
- R.-J. Chuang and N.R. Mendell, The approximate null distribution of the likelihood ratio test for a mixture of two bivariate normal distributions with equal covariance. Comm. Statist. Simulation Comput.26 (1997) 631-648.
- G.A. Churchill, Stochastic models for heterogeneous DNA sequences. Bull. Math. Biology51 (1989) 79-94.
- G. Ciuperca, Sur le test de maximum de vraisemblance pour le mélange de populations. Note aux C.R.A.S., 328, Série I, 4 (1999) 351-358.
- D. Dacunha-Castelle and M. Duflo, Probabilités et statistiques, Tome 2. Masson (1993).
- D. Dacunha-Castelle and E. Gassiat, Estimation of the number of components in a mixture. Bernoulli3 (1997a) 279-299.
- D. Dacunha-Castelle and E. Gassiat, Testing in locally conic models. ESAIM Probab. Statist.1 (1997b).
- D. Dacunha-Castelle and E. Gassiat, Testing the order of a model using locally conic parametrization: Population mixtures and stationary ARMA processes. Ann. Statist.27 (1999) 1178-1209.
- A.P. Dempster, N.M. Laird and D.B. Rubin, Large Maximum-likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B39 (1977) 1-38.
- R. Douc and C. Matias, Asymptotics of the Maximum Likelihood Estimator for general Hidden Markov Models (1999) (submitted).
- M. Duflo, Algorithmes stochastiques. Springer (1996).
- Z.D. Feng and C.E. McCulloch, Using bootstrap Likelihood Ratio in Finite Mixture Models. J. Roy. Statist. Soc. Ser. B58 (1996) 609-617.
- L. Finesso, Consistent Estimation of the Order for Markov and Hidden Markov Chains. Ph.D. Thesis, University of Maryland (1990).
- D.R. Fredkin and J.A. Rice, Maximum likelihood estimation and identification directly from single-channel recordings. Proc. Roy. Soc. London Ser. B249 (1992) 125-132.
- P. Hall and C.C. Heyde, Martingale Limit Theory and Its Application. Academic Press (1980).
- J.A. Hartigan, A failure of likelihood ratio asymptotics for normal mixtures, in Proc. Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, edited by L.M. Le Cam and R.A. Olshen (1985) 807-810.
- J. Henna, On estimating the number of constituents of a finite mixture of continuous distributions. Ann. Inst. Statist. Math.37 (1985) 235-240.
- J.L. Jensen and N.V. Petersen, Asymptotic normality of the maximum likelihood estimator in state space models. Ann. Statist. 27 (1999) 514-535.
- C. Keribin, Tests de modèles par maximum de vraisemblance, Thèse de l'Université d'Evry-Val d'Essonne (1999).
- C. Keribin, Consistent estimation of the Order of Mixture Models (1997) (submitted).
- B.G. Leroux, Maximum-likelihood estimation for hidden Markov models. Stochastic Process Appl.40 (1992) 127-143.
- B.G. Leroux and M.L. Puterman, Maximum Penalized Likelihood Estimation for Independent and Markov-Dependent Mixture Models. Biometrics48 (1992) 545-558.
- B.G. Lindsay, Mixture models: Theory, Geometry and Applications (1995).
- I.L. Mac Donald and W. Zucchini, Hidden Markov and Other Models for Discrete-valued Time Series. Chapman and Hall (1997).
- G.J. McLachlan, On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture. Appl. Statist.36 (1987) 318-324.
- L. Mevel, Statistique asymptotique pour les modèles de Markov cachés. Thèse de l'Université de Rennes I (1997).
- L. Mevel and F. LeGland, Exponential forgetting and Geometric Ergodicity in Hidden Markov models. Math. Control Signals Systems (to appear).
- S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability. Springer-Verlag (1993).
- L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE77 (1989) 257-284.
- T. Ryden, Estimating the order of hidden Markov models. Statistics26 (1995) 345-354.
- P. Vandekerkhove, Identification de l'ordre des processus ARMA stables. Contribution à l'étude statistique des chaînes de Markov cachées. Thèse de l'Université de Montpellier II (1997).
- A. Van der Vaart, Asymptotic Statistics. Cambridge Ed. (1999).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.