A new stochastic restricted biased estimator under heteroscedastic or correlated error
ESAIM: Probability and Statistics (2011)
- Volume: 15, page 30-40
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- G.M. Bayhan and M. Bayhan, Forcasting using autocorrelated errors and multicollinear predictor variables. Comput. Ind. Eng.34 (1998) 413–421.
- R.W. Farebrother, Fruther results on the mean square error of ridge regression. J. R. Stat. Soc. B38 (1976) 284–250.
- L. Firinguetti, A simulation study of ridge regression estimators with autocorrelated errors. Commun. Stat. Simul.18 (1989) 673–702.
- A.E. Hoerl and R.W. Kennard, Ridge Regression: Biased estimation for non-orthogonal problem. Technometrics12 (1970) 55–67.
- A.E. Hoerl and R.W. Kennard, Ridge Regression: Application for non-orthogonal problem. Technometrics12 (1970) 69–82.
- M.H. Hubert and P. Wijekoon, Improvement of the Liu estimator in linear regression model. Statist. Papers47 (2006) 471–479.
- K. Liu, A new class of biased estimate in linear regression. Commun. Stat. – Theory Meth.22 (1993) 393–402.
- C.R. Rao, Linear Statistics Inference and its applications. Second edn. John Wiley and Sons (1973).
- C.R. Rao, H. Toubtenburg and S.C. Heumann, Linear Models and Generalizations: Least squares and alternatives. Springer Ser. Statist. Springer-Verlag, New York (2008).
- C. Stein, Inadmissibility of the usual estimator for the mean of a multivariate normal distribution, in Proc. Third Berkeley Symp. on Mathematics, Statistics and Probability. Universiy of California, Berkeley, 1956, pp. 197–206.
- H. Theil, On the use of incomplete prior information in regression analysis. J. Am. Stat. Assoc. 58 (1963) 401–414.
- H. Theil and A.S. Goldberger, On pure and mixed estimation in econometrics. Int. Econ. Rev.2 (1961) 65–78.
- G. Trenkler, On the performance of biased estimators in the linear regression model with correlated or heteroscedastic errors. J. Econometrics25 (1984) 179–190.
- H. Yang and J. Xu, An alternative stochastic restricted Liu estimator in linear regression. Statist. Papers50 (2007) 639–647.