Goodness of fit test for isotonic regression
Cécile Durot; Anne-Sophie Tocquet
ESAIM: Probability and Statistics (2010)
- Volume: 5, page 119-140
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- R.E. Barlow, D.J. Bartholomew, J.M. Bremmer and H.D. Brunk, Statistical Inference under Order Restrictions. Wiley (1972).
- D. Barry and J.A. Hartigan, An omnibus test for departures from constant mean. Ann. Statist.18 (1990) 1340-1357.
- H.D. Brunk, On the estimation of parameters restricted by inequalities. Ann. Math. Statist. (1958) 437-454.
- C. Durot, Sharp asymptotics for isotonic regression. Probab. Theory Relat. Fields (to appear).
- R.L. Eubank and J.D. Hart, Testing goodness of fit in regression via order selection criteria. Ann. Statist.20 (1992) 1412-1425.
- R.L. Eubank and C.H. Spiegelman, Testing the goodness of fit of a linear model via nonparametric regression techniques. J. Amer. Statist. Assoc.85 (1990) 387-392.
- P. Groeneboom, Estimating a monotone density, edited by R.A. Olsen and L. Le Cam, in Proc. of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. 2. Wadsworth (1985) 539-554.
- P. Groeneboom, Brownian motion with parabolic drift and airy functions. Probab. Theory Relat. Fields (1989) 79-109.
- P. Hall, J.W. Kay and D.M. Titterington, Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika77 (1990) 521-528.
- W. Härdle and E. Mammen, Comparing nonparametric versus parametric regression fits. Ann. Statist.21 (1993) 1926-1947.
- J.D. Hart and T.E. Wehrly, Kernel regression when the boundary region is large, with an application to testing the adequacy of polynomial models. J. Amer. Statist. Assoc.87 (1992) 1018-1024.
- L. Reboul, Estimation of a function under shape restrictions. Applications to reliability, Preprint. Université Paris XI, Orsay (1997).
- D. Revuz and M. Yor, Continuous martingales and Brownian Motion. Springer-Verlag (1991).
- J. Rice, Bandwidth choice for nonparametric regression. Ann. Statist.4 (1984) 1215-1230.
- H.P. Rosenthal, On the subspace of lp, p>2, spanned by sequences of independent random variables. Israel J. Math.8 (1970) 273-303.
- A.I. Sakhanenko, Estimates in the variance principle. Trudy. Inst. Mat. Sibirsk. Otdel (1972) 27-44.
- J.G. Staniswalis and T.A. Severini, Diagnostics for assessing regression models. J. Amer. Statist. Assoc.86 (1991) 684-692.
- W. Stute, Nonparametric model checks for regression. Ann. Statist.15 (1997) 613-641.
- A.S. Tocquet, Construction et étude de tests en régression. 1. Correction du rapport de vraisemblance par approximation de Laplace en régression non-linéaire. 2. Test d'adéquation en régression isotonique à partir d'une asymptotique des fluctuations de la distance l1, Ph.D. Thesis. Université Paris Sud, Orsay (1998).