Minimax nonparametric hypothesis testing for ellipsoids and Besov bodies
Yuri I. Ingster; Irina A. Suslina
ESAIM: Probability and Statistics (2010)
- Volume: 4, page 53-135
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- M.V. Burnashev, On the minimax detection of an inaccurately known signal in a Gaussian noise background. Theory Probab. Appl.24 (1979) 107-119.
- A. Cohen, I. Daubechies, B. Jewerth and P. Vial, Multiresolution analysis, wavelets and fast algorithms on an interval. C. R. Acad. Sci. Paris (A)316 (1993) 417-421.
- A. Cohen, I. Daubechies and P. Vial, Wavelets on an interval and fast wavelet transforms. Appl. Comput. Harmon. Anal.1 (1993) 54-81.
- D.L. Donoho and I.M. Johnstone, Minimax estimation via wavelet shrinkage. Technical Report 402 Dep. of Statistics, Stanford University (1992).
- D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Wavelet shrinkage: Asymptopia? J. Roy. Statist. Soc. 57 (1995) 301-369.
- M.S. Ermakov, Minimax detection of a signal in a Gaussian white noise. Theory Probab. Appl.35 (1990) 667-679.
- I.A. Ibragimov and R.Z. Khasminskii, One problem of statistical estimation in a white Gaussian noise. Soviet Math. Dokl.236 (1977) 1351-1354.
- I.A. Ibragimov and R.Z. Khasminskii, Statistical Estimation: Asymptotic Theory. Springer, Berlin-New York (1981).
- Yu.I. Ingster, Minimax nonparametric detection of signals in white Gaussian noise. Problems Inform. Transmission18 (1982) 130-140.
- Yu.I. Ingster, Minimax testing of nonparametric hypotheses on a distribution density in Lp-metrics. Theory Probab. Appl.31 (1986) 333-337.
- Yu.I. Ingster, Minimax detection of a signals in lp-metrics. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 184 (1990) 152-168 [in Russian, Transl: J. Soviet. Math. 68 (1994) 4].
- Yu.I. Ingster, Asymptotically minimax hypothesis testing for nonparametric alternatives. I, II, III.Math. Methods Statist. 2 (1993) 85-114, 171-189, 249-268.
- Yu.I. Ingster, Minimax hypotheses testing for nondegenerate loss functions and extreme convex problems. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 228 (1996) 162-188 (in Russian).
- Yu.I. Ingster, Some problems of hypothesis testing leading to infinitely divisible distributions. Math. Methods Statist.6 (1997) 47-69.
- Yu.I. Ingster, Adaptation in Minimax Nonparametric Hypothesis Testing for ellipsoids and Besov bodies. Technical Report 419, Weierstrass Institute, Berlin (1998).
- Yu.I. Ingster and I.A. Suslina, Minimax signal detection for Besov balls and bodies. Problems Inform. Transmission34 (1998) 56-68.
- O.V. Lepski, On asymptotical exact testing of nonparametric hypotheses. CORE D.P. 9329, Université Catholique de Louvain (1993).
- O.V. Lepski, E. Mammen and V.G. Spokoiny, Optimal spatial adaptation to ingomogeneous smoothness: An approach based on kernal estimates with variable bandwidth selectors. Ann. Statist.25 (1997) 929-947.
- O.V. Lepski and V.G. Spokoiny, Minimax nonparametric hypothesis testing: the case of an inhomogeneous alternative. Bernoulli5 (1999) 333-358.
- O.V. Lepski and A.B. Tsybakov, Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point. Discussion Paper 91, Humboldt-Univ., Berlin. Probab. Theory Related Fields (to be published).
- Y. Meyer, Ondlettes. Herrmann, Paris (1990).
- M.S. Pinsker, Optimal filtration of square-integrable signals in Gaussian noise. Problems Inform. Transmission16 (1980) 120-133.
- M. Sion, On general minimax theorems. Pacific J. Math.58 (1958) 171-176.
- V.G. Spokoiny, Adaptive hypothesis testing using wavelets. Ann. Stat.24 (1996) 2477-2498.
- V.G. Spokoiny, Adaptive and spatially adaptive testing of nonparametric hypothesis. Math. Methods Statist.7 (1998) 245-273.
- I.A. Suslina, Minimax detection of a signal for lq-ellipsoids with a removed lp-ball. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 207 (1993) 127-137 (in Russian).
- I.A. Suslina, Extreme problems arising in minimax detection of a signal for lq-ellipsoids with a removed lp-ball. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 228 (1996) 312-332 (in Russian).