Les P-values comme votes d'experts
ESAIM: Probability and Statistics (2010)
- Volume: 4, page 191-204
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topMorel, Guy. "Les P-values comme votes d'experts." ESAIM: Probability and Statistics 4 (2010): 191-204. <http://eudml.org/doc/197743>.
@article{Morel2010,
abstract = {
The p-values are often implicitly used as a measure of evidence for the
hypotheses of the tests. This practice has been analyzed with different approaches. It is generally
accepted for the one-sided hypothesis problem, but it is often criticized for the two-sided hypothesis
problem. We analyze this practice with a new approach to statistical inference. First we select good
decision rules without using a loss function, we call them experts. Then we define a probability
distribution on the space of experts. The measure of evidence for a hypothesis is the inductive
probability of experts that decide this hypothesis.
},
author = {Morel, Guy},
journal = {ESAIM: Probability and Statistics},
keywords = {Théorie de la décision; tests; p-values; seuils minimum de rejet; hypothèses
unilatérales et bilatérales.; unilateral hypothesis; bilateral hypothesis},
language = {eng},
month = {3},
pages = {191-204},
publisher = {EDP Sciences},
title = {Les P-values comme votes d'experts},
url = {http://eudml.org/doc/197743},
volume = {4},
year = {2010},
}
TY - JOUR
AU - Morel, Guy
TI - Les P-values comme votes d'experts
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 4
SP - 191
EP - 204
AB -
The p-values are often implicitly used as a measure of evidence for the
hypotheses of the tests. This practice has been analyzed with different approaches. It is generally
accepted for the one-sided hypothesis problem, but it is often criticized for the two-sided hypothesis
problem. We analyze this practice with a new approach to statistical inference. First we select good
decision rules without using a loss function, we call them experts. Then we define a probability
distribution on the space of experts. The measure of evidence for a hypothesis is the inductive
probability of experts that decide this hypothesis.
LA - eng
KW - Théorie de la décision; tests; p-values; seuils minimum de rejet; hypothèses
unilatérales et bilatérales.; unilateral hypothesis; bilateral hypothesis
UR - http://eudml.org/doc/197743
ER -
References
top- J.R. Barra, Notions fondamentales de statistique mathématique. Dunod, Paris (1971). Zbl0257.62004
- J.O. Berger, Statistical decision theory and Bayesian analysis, second edition. Springer-Verlag, New York (1985).
- J.O. Berger et T. Sellke, Testing a point null hypothesis: The irreconcilability of p-values and evidence. J. Amer. Statist. Assoc.82 (1987) 112-122. Zbl0612.62022
- R.J. Buehler, Fiducial inference, An appreciation, edited by R.A. Fisher. Springer-Verlag, New York, Lecture Notes in Statistics (1980) 109-118.
- G. Casella et R.L. Berger, Reconciling Bayesian and frequentist evidence in the one-sided testing problem. J. Amer. Statist. Assoc.82 (1987) 106-111. Zbl0612.62021
- J.M. Dickey, Three multidimensional-integral identities with bayesian applications. Ann. Math. Statist.39 (1968) 1615-1628. Zbl0169.50505
- R.A. Fisher, The fiducial argument in statistical inference. Annals of Eugenics6 (1935) 391-398.
- K.R. Gabriel, Simultaneous test procedures — some theory of multiple comparisons. Ann. Math. Statist.40 (1969) 224-250. Zbl0198.23602
- H.M.J. Hung, R.T. O'Neill, P. Bauer et K. Köhne, The behavior of the p-value when the alternative hypothesis is true. Biometrics53 (1997) 11-22. Zbl0876.62015
- J.T. Hwang, G. Casella, C. Robert, M.T. Wells et R.H. Farrell, Estimation of accuracy in testing. Ann. Statist.20 (1992) 490-509. Zbl0761.62022
- S. Karlin, Decision theory for Pólya type distributions. Case of two actions, I, in Proc. Third Berkeley Symposium on Math. Statist. and Prob. Univ. of Calif. Press 1 (1955) 115-128.
- A.H. Kroese, E.A. van der Meulen, K. Poortema et W. Schaafsma, Distributional inference. Statistica Neerlandica49 (1995) 63-82.
- E.L. Lehmann, Testing statistical hypotheses, second edition. Wiley, New York (1986). Zbl0608.62020
- E.A. van der Meulen et W. Schaafsma, Assessing weights of evidence for discussing classical statistical hypotheses. Statistics & Decisions11 (1993) 201-220. Zbl0804.62022
- A. Monfort, Cours de statistique mathématique. Économica, Paris (1982).
- G. Morel, Expertises : procédures statistiques d'aide à la décision, Pré-publication. LAST-Université de Tours (1997) 182.
- G. Morel, Probabiliser l'espace des décisions, Pub. Sém. 97 : Bru Huber Prum, Paris V (1998) 71-98.
- C. Robert, L'analyse statistique bayésienne. Économica, Paris (1992).
- D. Salomé, Statistical inference via fiducial methods, Ph.D. Thesis, Rijksuniversiteit Groningen (1998).
- W. Schaafsma, J. Tolboom et B. van der Meulen, Discussing truth and falsity by computing a Q-value, in Statistical Data Analysis and Inference, edited by Y. Dodge. North-Holland, Amsterdam (1989) 85-100. Zbl0735.62002
- H. Scheffé, The analysis of variance, sixième édition. Wiley, New York (1970).
- M.J. Schervish, P-values: What they are and what they are not. Amer. Statist.50 (1996) 203-206.
- P. Thompson, Improving the admissibility screen: Evaluating test statistics on the basis of p-values rather than power. Comm. Statist. Theory Methods25 (1996) 537-553. Zbl0875.62043
- * Recherche réalisée dans le cadre du LAST et du CNRS UPRES-A 6083 de Tours..
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.