Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion

Sandie Souchet Samos

ESAIM: Probability and Statistics (2010)

  • Volume: 4, page 233-258
  • ISSN: 1292-8100

Abstract

top
Let YT = (Yt)t∈[0,T] be a real ergodic diffusion process which drift depends on an unkown parameter θ 0 p . Our aim is to estimate θ0 from a discrete observation of the process YT, (Ykδ)k=0,n, for a fixed and small δ, as T = nδ goes to infinity. For that purpose, we adapt the Generalized Method of Moments (see Hansen) to the anticipative and approximate discrete-time trapezoidal scheme, and then to Simpson's. Under some general assumptions, the trapezoidal scheme (respectively Simpson's scheme) provides an estimation of θ0 with a bias of order δ2 (resp. δ4). Moreover, this estimator is asymptotically normal. These results generalize Bergstrom's [1], which were obtained for a Gaussian diffusion process, which drift is linear in θ.

How to cite

top

Samos, Sandie Souchet. "Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion." ESAIM: Probability and Statistics 4 (2010): 233-258. <http://eudml.org/doc/197771>.

@article{Samos2010,
abstract = { Let YT = (Yt)t∈[0,T] be a real ergodic diffusion process which drift depends on an unkown parameter $\theta_\{0\}\in \mathbb\{R\}^\{p\}$. Our aim is to estimate θ0 from a discrete observation of the process YT, (Ykδ)k=0,n, for a fixed and small δ, as T = nδ goes to infinity. For that purpose, we adapt the Generalized Method of Moments (see Hansen) to the anticipative and approximate discrete-time trapezoidal scheme, and then to Simpson's. Under some general assumptions, the trapezoidal scheme (respectively Simpson's scheme) provides an estimation of θ0 with a bias of order δ2 (resp. δ4). Moreover, this estimator is asymptotically normal. These results generalize Bergstrom's [1], which were obtained for a Gaussian diffusion process, which drift is linear in θ. },
author = {Samos, Sandie Souchet},
journal = {ESAIM: Probability and Statistics},
keywords = {Schéma du trapèze; schéma de Simpson; schéma anticipatif; diffusion ergodique; estimation par variables instrumentales; méthode des moments généralisés; contraste; biais d'estimation; efficacité asymptotique en variance.; trapezoidal scheme; Simpson scheme; ergodic diffusion; instrumental variables estimation; generalized method of moments; contrast; bias of estimation; variance asymptotic efficiency},
language = {eng},
month = {3},
pages = {233-258},
publisher = {EDP Sciences},
title = {Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion},
url = {http://eudml.org/doc/197771},
volume = {4},
year = {2010},
}

TY - JOUR
AU - Samos, Sandie Souchet
TI - Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 4
SP - 233
EP - 258
AB - Let YT = (Yt)t∈[0,T] be a real ergodic diffusion process which drift depends on an unkown parameter $\theta_{0}\in \mathbb{R}^{p}$. Our aim is to estimate θ0 from a discrete observation of the process YT, (Ykδ)k=0,n, for a fixed and small δ, as T = nδ goes to infinity. For that purpose, we adapt the Generalized Method of Moments (see Hansen) to the anticipative and approximate discrete-time trapezoidal scheme, and then to Simpson's. Under some general assumptions, the trapezoidal scheme (respectively Simpson's scheme) provides an estimation of θ0 with a bias of order δ2 (resp. δ4). Moreover, this estimator is asymptotically normal. These results generalize Bergstrom's [1], which were obtained for a Gaussian diffusion process, which drift is linear in θ.
LA - eng
KW - Schéma du trapèze; schéma de Simpson; schéma anticipatif; diffusion ergodique; estimation par variables instrumentales; méthode des moments généralisés; contraste; biais d'estimation; efficacité asymptotique en variance.; trapezoidal scheme; Simpson scheme; ergodic diffusion; instrumental variables estimation; generalized method of moments; contrast; bias of estimation; variance asymptotic efficiency
UR - http://eudml.org/doc/197771
ER -

References

top
  1. A.R. Bergstrom, Statistical inference in Continuous Time Series, in Statistical inference in Continuous Time Economic Models, Bergstrom, Ed., North Holland, Amsterdam (1976).  Zbl0348.00027
  2. B.M. Bibby et M. Sorensen, Martingale Estimation Functions for Discretely Observed Diffusion Processes. Bernoulli1 (1995) 17-39.  Zbl0830.62075
  3. D. Dacunha-Castelle et M. Duflo, Probabilité et Statistiques. Tome 2, 2e Ed. Masson (1993).  
  4. D. Dacunha-Castelle et D. Florens-Zmirou, Estimation of the coefficient of a diffusion from discrete observations. Stochastics19 (1986) 263-284.  Zbl0626.62085
  5. D. Florens-Zmirou, Approximate discrete schemes for statistics of diffusion processes. Statistics20 (1989) 547-557.  Zbl0704.62072
  6. C. Gourieroux et A. Monfort, Statistique et Modèles Économétriques. Tome 1. Economica.  
  7. L. Hansen, Large Sample Properies of Generalized Method of Moments Estimators. Econometrica50 (1982) 1029-1054.  Zbl0502.62098
  8. L. Hansen et K. Singleton, Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models. Econometrica50 (1982) 1269-1286.  Zbl0497.62098
  9. I. Karatzas et S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd Ed. Springer (1996).  Zbl0734.60060
  10. M. Kessler, Estimation of an ergodic diffusion from discrete observations. Scand. J. Stat.24 (1997) 211-229.  Zbl0879.60058
  11. M. Kessler, Simple and Explicit Estimating Functions for a Discretely Observed Diffusion Process. Research Reports 336, Department of theoretical statistics, University of Aarhus (1995).  Zbl0940.62074
  12. M. Kessler et M. Sorensen, Estimating Equations Based on Eigenfunctions for a Discretely Observed Diffusion Process. Research Reports 332, Department of theoretical statistics, University of Aarhus (1995).  Zbl0980.62074
  13. P.E. Kloeden et E. Platen, Numerical Solution of Stochastic Differential Equations. Springer (1995).  Zbl0858.65148
  14. Yu.A. Kutoyants, Parameter estimation for stochastic processes. Heldermann Verlag, Berlin, Research and Exposition in Math.6 (1984).  
  15. R.S. Liptser et A.N. Shiryaev, Statistics of random processes. Tomes 1, 2. Springer-Verlag (1977).  Zbl0556.60003
  16. W.H. Press, S.A. Teukolskey, W.T. Vetterling et B.P. Flannery, Numerical Recipes in C, 2nd Ed. Cambridge University Press, 132-133.  
  17. B.L.S. Prakasa-Rao, Asymptotic theory for non linear least squares estimator for diffusion proceses. Math. Operationsforsch. Statist Ser. Berlin14 (1983) 195-209.  Zbl0532.62060
  18. A.R. Pedersen, Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. Bernoulli1 (1995) 257-279.  Zbl0839.62079
  19. A.R. Pedersen, A new approch to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Statist.22 (1995) 55-71.  Zbl0827.62087
  20. J.D. Sargan, Some discrete approximations to continuous times stochastics models, in Statistical inference in Continuous Time Economic Models. Bergstrom, Ed., North Holand, Amsterdam (1976) 27-80.  
  21. M. Sorensen, Estimating functions for discretely observed diffusions: A review. Research Reports 348, Department of theoretical statistics, University of Aarhus (1996).  Zbl0906.62079
  22. N. Yoshida, Estimation for diffusion processes from discrete observations. J. Multivariate Anal.41 (1992) 220-242.  Zbl0811.62083

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.