Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion
ESAIM: Probability and Statistics (2010)
- Volume: 4, page 233-258
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topSamos, Sandie Souchet. "Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion." ESAIM: Probability and Statistics 4 (2010): 233-258. <http://eudml.org/doc/197771>.
@article{Samos2010,
abstract = {
Let YT = (Yt)t∈[0,T] be a real ergodic
diffusion process which drift depends on an unkown
parameter $\theta_\{0\}\in \mathbb\{R\}^\{p\}$. Our aim is to estimate θ0 from a discrete
observation of the process YT, (Ykδ)k=0,n, for a
fixed and small δ, as T = nδ goes to infinity. For that purpose, we
adapt the Generalized Method of Moments (see Hansen) to the anticipative
and approximate discrete-time trapezoidal scheme, and then to Simpson's.
Under some general assumptions, the trapezoidal scheme (respectively Simpson's
scheme) provides an estimation of θ0 with a bias of order δ2 (resp.
δ4). Moreover, this estimator is asymptotically normal.
These results generalize Bergstrom's [1], which were obtained for a
Gaussian diffusion process, which drift is linear in θ.
},
author = {Samos, Sandie Souchet},
journal = {ESAIM: Probability and Statistics},
keywords = {Schéma du trapèze; schéma de Simpson; schéma anticipatif; diffusion
ergodique; estimation par variables instrumentales; méthode des moments généralisés;
contraste; biais d'estimation; efficacité asymptotique en variance.; trapezoidal scheme; Simpson scheme; ergodic diffusion; instrumental variables estimation; generalized method of moments; contrast; bias of estimation; variance asymptotic efficiency},
language = {eng},
month = {3},
pages = {233-258},
publisher = {EDP Sciences},
title = {Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion},
url = {http://eudml.org/doc/197771},
volume = {4},
year = {2010},
}
TY - JOUR
AU - Samos, Sandie Souchet
TI - Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 4
SP - 233
EP - 258
AB -
Let YT = (Yt)t∈[0,T] be a real ergodic
diffusion process which drift depends on an unkown
parameter $\theta_{0}\in \mathbb{R}^{p}$. Our aim is to estimate θ0 from a discrete
observation of the process YT, (Ykδ)k=0,n, for a
fixed and small δ, as T = nδ goes to infinity. For that purpose, we
adapt the Generalized Method of Moments (see Hansen) to the anticipative
and approximate discrete-time trapezoidal scheme, and then to Simpson's.
Under some general assumptions, the trapezoidal scheme (respectively Simpson's
scheme) provides an estimation of θ0 with a bias of order δ2 (resp.
δ4). Moreover, this estimator is asymptotically normal.
These results generalize Bergstrom's [1], which were obtained for a
Gaussian diffusion process, which drift is linear in θ.
LA - eng
KW - Schéma du trapèze; schéma de Simpson; schéma anticipatif; diffusion
ergodique; estimation par variables instrumentales; méthode des moments généralisés;
contraste; biais d'estimation; efficacité asymptotique en variance.; trapezoidal scheme; Simpson scheme; ergodic diffusion; instrumental variables estimation; generalized method of moments; contrast; bias of estimation; variance asymptotic efficiency
UR - http://eudml.org/doc/197771
ER -
References
top- A.R. Bergstrom, Statistical inference in Continuous Time Series, in Statistical inference in Continuous Time Economic Models, Bergstrom, Ed., North Holland, Amsterdam (1976). Zbl0348.00027
- B.M. Bibby et M. Sorensen, Martingale Estimation Functions for Discretely Observed Diffusion Processes. Bernoulli1 (1995) 17-39. Zbl0830.62075
- D. Dacunha-Castelle et M. Duflo, Probabilité et Statistiques. Tome 2, 2e Ed. Masson (1993).
- D. Dacunha-Castelle et D. Florens-Zmirou, Estimation of the coefficient of a diffusion from discrete observations. Stochastics19 (1986) 263-284. Zbl0626.62085
- D. Florens-Zmirou, Approximate discrete schemes for statistics of diffusion processes. Statistics20 (1989) 547-557. Zbl0704.62072
- C. Gourieroux et A. Monfort, Statistique et Modèles Économétriques. Tome 1. Economica.
- L. Hansen, Large Sample Properies of Generalized Method of Moments Estimators. Econometrica50 (1982) 1029-1054. Zbl0502.62098
- L. Hansen et K. Singleton, Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models. Econometrica50 (1982) 1269-1286. Zbl0497.62098
- I. Karatzas et S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd Ed. Springer (1996). Zbl0734.60060
- M. Kessler, Estimation of an ergodic diffusion from discrete observations. Scand. J. Stat.24 (1997) 211-229. Zbl0879.60058
- M. Kessler, Simple and Explicit Estimating Functions for a Discretely Observed Diffusion Process. Research Reports 336, Department of theoretical statistics, University of Aarhus (1995). Zbl0940.62074
- M. Kessler et M. Sorensen, Estimating Equations Based on Eigenfunctions for a Discretely Observed Diffusion Process. Research Reports 332, Department of theoretical statistics, University of Aarhus (1995). Zbl0980.62074
- P.E. Kloeden et E. Platen, Numerical Solution of Stochastic Differential Equations. Springer (1995). Zbl0858.65148
- Yu.A. Kutoyants, Parameter estimation for stochastic processes. Heldermann Verlag, Berlin, Research and Exposition in Math.6 (1984).
- R.S. Liptser et A.N. Shiryaev, Statistics of random processes. Tomes 1, 2. Springer-Verlag (1977). Zbl0556.60003
- W.H. Press, S.A. Teukolskey, W.T. Vetterling et B.P. Flannery, Numerical Recipes in C, 2nd Ed. Cambridge University Press, 132-133.
- B.L.S. Prakasa-Rao, Asymptotic theory for non linear least squares estimator for diffusion proceses. Math. Operationsforsch. Statist Ser. Berlin14 (1983) 195-209. Zbl0532.62060
- A.R. Pedersen, Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. Bernoulli1 (1995) 257-279. Zbl0839.62079
- A.R. Pedersen, A new approch to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Statist.22 (1995) 55-71. Zbl0827.62087
- J.D. Sargan, Some discrete approximations to continuous times stochastics models, in Statistical inference in Continuous Time Economic Models. Bergstrom, Ed., North Holand, Amsterdam (1976) 27-80.
- M. Sorensen, Estimating functions for discretely observed diffusions: A review. Research Reports 348, Department of theoretical statistics, University of Aarhus (1996). Zbl0906.62079
- N. Yoshida, Estimation for diffusion processes from discrete observations. J. Multivariate Anal.41 (1992) 220-242. Zbl0811.62083
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.