A modified algorithm for the strict feasibility problem

D. Benterki; B. Merikhi

RAIRO - Operations Research (2010)

  • Volume: 35, Issue: 4, page 395-399
  • ISSN: 0399-0559

Abstract

top
In this note, we present a slight modification of an algorithm for the strict feasibility problem. This modification reduces the number of iterations.

How to cite

top

Benterki, D., and Merikhi, B.. "A modified algorithm for the strict feasibility problem." RAIRO - Operations Research 35.4 (2010): 395-399. <http://eudml.org/doc/197781>.

@article{Benterki2010,
abstract = { In this note, we present a slight modification of an algorithm for the strict feasibility problem. This modification reduces the number of iterations. },
author = {Benterki, D., Merikhi, B.},
journal = {RAIRO - Operations Research},
keywords = {Strict feasibility; interior point methods; Ye–Lustig algorithm.; strict feasibility; Ye-Lustig algorithm},
language = {eng},
month = {3},
number = {4},
pages = {395-399},
publisher = {EDP Sciences},
title = {A modified algorithm for the strict feasibility problem},
url = {http://eudml.org/doc/197781},
volume = {35},
year = {2010},
}

TY - JOUR
AU - Benterki, D.
AU - Merikhi, B.
TI - A modified algorithm for the strict feasibility problem
JO - RAIRO - Operations Research
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 4
SP - 395
EP - 399
AB - In this note, we present a slight modification of an algorithm for the strict feasibility problem. This modification reduces the number of iterations.
LA - eng
KW - Strict feasibility; interior point methods; Ye–Lustig algorithm.; strict feasibility; Ye-Lustig algorithm
UR - http://eudml.org/doc/197781
ER -

References

top
  1. D. Benterki, Étude des performances de l'algorithme de Karmarkar pour la programmation linéaire. Thèse de Magister, Département de Mathématiques, Université de Annaba, Algérie (1992).  
  2. J.C. Culioli, Introduction à l'optimisation. Édition Marketing, Ellipses, Paris (1994).  
  3. I.J. Lustig, A pratical approach to Karmarkar's algorithm. Technical report sol 85-5, Department of Operations Research Stanford University, Stanford, California.  
  4. A. Keraghel, Étude adaptative et comparative des principales variantes dans l'algorithme de Karmarkar, Thèse de Doctorat de mathématiques appliquées. Université Joseph Fourier, Grenoble, France (1989).  
  5. D.F. Shanno and R.E. Marsten, A reduced-gradient variant of Karmarkar's algorithm and null-space projections. J. Optim. Theory Appl.57 (1988) 383-397.  
  6. S.J. Wright, Primal-dual interior point method. SIAM, Philadelphia, PA (1997).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.