Un Algorithme pour la Bipartition d'un Graphe en Sous-graphes de Cardinalité Fixée
Philippe Michelon; Stéphanie Ripeau; Nelson Maculan
RAIRO - Operations Research (2010)
- Volume: 35, Issue: 4, page 401-414
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topMichelon, Philippe, Ripeau, Stéphanie, and Maculan, Nelson. "Un Algorithme pour la Bipartition d'un Graphe en Sous-graphes de Cardinalité Fixée." RAIRO - Operations Research 35.4 (2010): 401-414. <http://eudml.org/doc/197797>.
@article{Michelon2010,
abstract = {
A branch-and-bound method for solving the min cut with size constraint problem
is presented. At each node of the branch-and-bound tree the feasible set is
approximated by an ellipsoid and a lower bound is computed by minimizing the
quadratic objective function over this ellipsoid. An upper bound is also
obtained by a Tabu search method. Numerical results will be presented.
},
author = {Michelon, Philippe, Ripeau, Stéphanie, Maculan, Nelson},
journal = {RAIRO - Operations Research},
keywords = {branch-and-bound; min cut; quadratic objective function; tabu search},
language = {fre},
month = {3},
number = {4},
pages = {401-414},
publisher = {EDP Sciences},
title = {Un Algorithme pour la Bipartition d'un Graphe en Sous-graphes de Cardinalité Fixée},
url = {http://eudml.org/doc/197797},
volume = {35},
year = {2010},
}
TY - JOUR
AU - Michelon, Philippe
AU - Ripeau, Stéphanie
AU - Maculan, Nelson
TI - Un Algorithme pour la Bipartition d'un Graphe en Sous-graphes de Cardinalité Fixée
JO - RAIRO - Operations Research
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 4
SP - 401
EP - 414
AB -
A branch-and-bound method for solving the min cut with size constraint problem
is presented. At each node of the branch-and-bound tree the feasible set is
approximated by an ellipsoid and a lower bound is computed by minimizing the
quadratic objective function over this ellipsoid. An upper bound is also
obtained by a Tabu search method. Numerical results will be presented.
LA - fre
KW - branch-and-bound; min cut; quadratic objective function; tabu search
UR - http://eudml.org/doc/197797
ER -
References
top- E.R. Barnes, An algorithm for partitioning the nodes of a graph. SIAM J. Algebraic Discrete Math.3 (1982) 541-550.
- E.R. Barnes, A. Vanelli et J.Q. Walker, A new heuristic for partitioning the nodes of a graph. SIAM J. Discrete Math.1 (1988) 299-305.
- R.B. Boppana, Eigenvalues and graph bissection: An average case analysis, in Proc. of the 28th annual symposium on computer sciences. IEEE London (1987) 280-285.
- A. Billionnet et A. Faye, A lower bound for a constrained quadratic 0-1minimization problem. Discrete Appl. Math. (soumis).
- N. Christofides et P. Brooker, The optimal partitioning of graphs. SIAM J. Appl. Math.30 (1976) 55-69.
- W.E. Donath et A.J. Hoffman, Lower bounds for the partitioning of graphs. IBM J. Res. Developments17 (1973) 420-425.
- J. Falkner, F. Rendl et H. Wolkowicz, A computational study of graph partitioning. Math. Programming66 (1994) 211-240.
- D.M. Gay, Computing optimal locally constrained steps. SIAM J. Sci. Statist. Comput.2 (1981) 186-197.
- M. Held, P. Wolfe et H.D. Crowder, Validation of the subgradient optimization. Math. Programming6 (1974) 62-88.
- D.S. Johnson, C.R. Aragon, L.A. McGeoch et C. Schevon, Optimization by simulated annealing: An experimental evaluation, Part 1, Graph partitioning. Oper. Res.37 (1989) 865-892.
- B.W. Kernighan et S. Lin, An efficient heuristic procedure for partitioning graphs. The Bell System Technical J.49 (1970) 291-307.
- T. Lengauer, Combinatorial algorithms for integrated circuit layout. Wiley, Chicester (1990).
- J.M. Martinez, Local minimizers of quadratic functions on euclidean balls and spheres. SIAM J. Optim.4 (1994) 159-176.
- P. Michelon, N. Brossard et N. Maculan, A branch-and-bound scheme for unconstrained 0-1 quadratic programs, Rapport Technique # 960, DIRO. Université de Montréal. SIAM J. Optim. (soumis).
- J.J. Moré et D.C. Sorensen, Computing a trust region step. SIAM J. Sci. Statist. Comput.4 (1983) 553-572.
- G.L. Nemhauser et L.A. Wolsey, Integer and Combinatorial Optimization. Wiley, New York (1988).
- C. Roucairol et P. Hansen, Problème de la bipartition minimale d'un graphe. RAIRO: Oper. Res.21 (1987) 325-348.
- D.C. Sorensen, Newton's method with a model trust region modification. SIAM J. Numer. Anal.19 (1982) 406-426.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.