Équivalence asymptotique des expériences statistiques

Michael Nussbaum

Journal de la société française de statistique (2004)

  • Volume: 145, Issue: 1, page 31-45
  • ISSN: 1962-5197

How to cite

top

Nussbaum, Michael. "Équivalence asymptotique des expériences statistiques." Journal de la société française de statistique 145.1 (2004): 31-45. <http://eudml.org/doc/198417>.

@article{Nussbaum2004,
author = {Nussbaum, Michael},
journal = {Journal de la société française de statistique},
language = {fre},
number = {1},
pages = {31-45},
publisher = {Société française de statistique},
title = {Équivalence asymptotique des expériences statistiques},
url = {http://eudml.org/doc/198417},
volume = {145},
year = {2004},
}

TY - JOUR
AU - Nussbaum, Michael
TI - Équivalence asymptotique des expériences statistiques
JO - Journal de la société française de statistique
PY - 2004
PB - Société française de statistique
VL - 145
IS - 1
SP - 31
EP - 45
LA - fre
UR - http://eudml.org/doc/198417
ER -

References

top
  1. [1] BROWN L. D. and LOW M. (1996). Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398. Zbl0867.62022MR1425958
  2. [2] BROWN L. D., CARTER A. V., LOW M. G. and ZHANG C.-H. (2004). Equivalence theory for density estimation, Poisson processes and Gaussian white noise with drift. To appear, Ann. Statist. 32 (5). Zbl1062.62083MR2102503
  3. [3] BROWN L. D. and ZHANG C.-H. (1998). Asymptotic nonequivalence of non-parametric experiments when the smoothness index is 1/2. Ann. Statist. 26, 279-287. Zbl0932.62061MR1611772
  4. [4] CARTER A. (2002). Deficiency distance between multinomial and multivariate normal experiments. Ann. Statist. 30 708-730. Zbl1029.62005MR1922539
  5. [5] DAVIES R.B. (1973). Asymptotic inference in stationary Gaussian time-series, Adv. Appl. Probab. 5, 469-497. Zbl0276.62078MR341699
  6. [6] DZHAPARIDZE K. (1986). Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series. Springer-Verlag, New York Inc. Zbl0584.62157MR812272
  7. [7] GENON-CATALOT V. et PICARD D. (1993). Eléments de Statistique Asymptotique. Mathématiques et Applications 11, Springer Verlag, Paris. Zbl0875.62002MR1618701
  8. [8] GENON-CATALOT V., LARÉDO C., NUSSBAUM M. (2002). Asymptotic equivalence of estimating a Poisson intensity and a positive diffusion drift. Ann. Statist. 30 731-753. Zbl1029.62071MR1922540
  9. [9] GOLUBEV G., NUSSBAUM M. and ZHOU H. (2004). Asymptotic equivalence of spectral density estimation and Gaussian white noise. En préparation. Zbl1181.62152
  10. [10] GRAMA I. and NUSSBAUM M. (1998). Asymptotic equivalence for nonparametric generalized linear models. Prob. Theor. Rel. Fields, 111, 167-214. Zbl0953.62039MR1633574
  11. [11] GRAMA I. and NUSSBAUM M. (2002). Asymptotic equivalence for nonparametric regression. Math. Meth. Statist. 11 (1) 1-36. Zbl1005.62039MR1900972
  12. [12] BROWN L. D. and LOW M. (1996). Asymptotic equivalence of nonparametric regression and white noise, Ann. Statist. 24 2384-2398 (1996). Zbl0867.62022MR1425958
  13. [13] LE CAM L. (1969). Théorie Asymptotique de la Décision Statistique. Les Presses de l'Université de Montréal. Zbl0203.51601MR260085
  14. [14] LE CAM L. (1985). Sur l'approximation de familles de mesures par des familles gaussiennes. Ann. Inst. Henri Poincaré 21 (3) 225-287. Zbl0584.62024MR812553
  15. [15] LE CAM L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer-Verlag, New York. Zbl0605.62002MR856411
  16. [16] LE CAM L. and YANG G. (2000). Asymptotics in Statistics, 2nd ed.. Springer-Verlag, New-York. Zbl0952.62002MR1784901
  17. [17] MÜLLER D. W. (1981). The increase of risk due to inaccurate models. Symposia Mathematica. Instituto Nazionale di Alta Mathematica, Vol. 25. MR618863
  18. [18] NUSSBAUM M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24, 2399-2430. Zbl0867.62035MR1425959
  19. [19] PFANZAGL J. (1995). On local and global asymptotic normality. Math. Meth. Statist. 4 115-136 Zbl0831.62017MR1335151
  20. [20] SHIRYAEV A. N. and SPOKOINY V. (2000). Statistical Experiments and Decisions : Asymptotic Theory. World Scientifîc, Singapore. Zbl0967.62002MR1791434
  21. [21] STRASSER H. (1985). Mathematical Theory of Statistics. de Gruyter, Berlin. Zbl0594.62017MR812467
  22. [22] VAN DER VAART A. W. (1998). Asymptotic Statistics. Cambridge University Press. Zbl0910.62001MR1652247
  23. [23] VAN DER VAART A. W. (2002). The statistical work of Lucien Le Cam. Ann. Statist. 30 631-682. Zbl1103.62301MR1922537
  24. [24] WALD A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Amer. Math. Soc. 54 426-482. Zbl0063.08120MR12401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.