Équivalence asymptotique des expériences statistiques
Journal de la société française de statistique (2004)
- Volume: 145, Issue: 1, page 31-45
- ISSN: 1962-5197
Access Full Article
topHow to cite
topNussbaum, Michael. "Équivalence asymptotique des expériences statistiques." Journal de la société française de statistique 145.1 (2004): 31-45. <http://eudml.org/doc/198417>.
@article{Nussbaum2004,
author = {Nussbaum, Michael},
journal = {Journal de la société française de statistique},
language = {fre},
number = {1},
pages = {31-45},
publisher = {Société française de statistique},
title = {Équivalence asymptotique des expériences statistiques},
url = {http://eudml.org/doc/198417},
volume = {145},
year = {2004},
}
TY - JOUR
AU - Nussbaum, Michael
TI - Équivalence asymptotique des expériences statistiques
JO - Journal de la société française de statistique
PY - 2004
PB - Société française de statistique
VL - 145
IS - 1
SP - 31
EP - 45
LA - fre
UR - http://eudml.org/doc/198417
ER -
References
top- [1] BROWN L. D. and LOW M. (1996). Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398. Zbl0867.62022MR1425958
- [2] BROWN L. D., CARTER A. V., LOW M. G. and ZHANG C.-H. (2004). Equivalence theory for density estimation, Poisson processes and Gaussian white noise with drift. To appear, Ann. Statist. 32 (5). Zbl1062.62083MR2102503
- [3] BROWN L. D. and ZHANG C.-H. (1998). Asymptotic nonequivalence of non-parametric experiments when the smoothness index is 1/2. Ann. Statist. 26, 279-287. Zbl0932.62061MR1611772
- [4] CARTER A. (2002). Deficiency distance between multinomial and multivariate normal experiments. Ann. Statist. 30 708-730. Zbl1029.62005MR1922539
- [5] DAVIES R.B. (1973). Asymptotic inference in stationary Gaussian time-series, Adv. Appl. Probab. 5, 469-497. Zbl0276.62078MR341699
- [6] DZHAPARIDZE K. (1986). Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series. Springer-Verlag, New York Inc. Zbl0584.62157MR812272
- [7] GENON-CATALOT V. et PICARD D. (1993). Eléments de Statistique Asymptotique. Mathématiques et Applications 11, Springer Verlag, Paris. Zbl0875.62002MR1618701
- [8] GENON-CATALOT V., LARÉDO C., NUSSBAUM M. (2002). Asymptotic equivalence of estimating a Poisson intensity and a positive diffusion drift. Ann. Statist. 30 731-753. Zbl1029.62071MR1922540
- [9] GOLUBEV G., NUSSBAUM M. and ZHOU H. (2004). Asymptotic equivalence of spectral density estimation and Gaussian white noise. En préparation. Zbl1181.62152
- [10] GRAMA I. and NUSSBAUM M. (1998). Asymptotic equivalence for nonparametric generalized linear models. Prob. Theor. Rel. Fields, 111, 167-214. Zbl0953.62039MR1633574
- [11] GRAMA I. and NUSSBAUM M. (2002). Asymptotic equivalence for nonparametric regression. Math. Meth. Statist. 11 (1) 1-36. Zbl1005.62039MR1900972
- [12] BROWN L. D. and LOW M. (1996). Asymptotic equivalence of nonparametric regression and white noise, Ann. Statist. 24 2384-2398 (1996). Zbl0867.62022MR1425958
- [13] LE CAM L. (1969). Théorie Asymptotique de la Décision Statistique. Les Presses de l'Université de Montréal. Zbl0203.51601MR260085
- [14] LE CAM L. (1985). Sur l'approximation de familles de mesures par des familles gaussiennes. Ann. Inst. Henri Poincaré 21 (3) 225-287. Zbl0584.62024MR812553
- [15] LE CAM L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer-Verlag, New York. Zbl0605.62002MR856411
- [16] LE CAM L. and YANG G. (2000). Asymptotics in Statistics, 2nd ed.. Springer-Verlag, New-York. Zbl0952.62002MR1784901
- [17] MÜLLER D. W. (1981). The increase of risk due to inaccurate models. Symposia Mathematica. Instituto Nazionale di Alta Mathematica, Vol. 25. MR618863
- [18] NUSSBAUM M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24, 2399-2430. Zbl0867.62035MR1425959
- [19] PFANZAGL J. (1995). On local and global asymptotic normality. Math. Meth. Statist. 4 115-136 Zbl0831.62017MR1335151
- [20] SHIRYAEV A. N. and SPOKOINY V. (2000). Statistical Experiments and Decisions : Asymptotic Theory. World Scientifîc, Singapore. Zbl0967.62002MR1791434
- [21] STRASSER H. (1985). Mathematical Theory of Statistics. de Gruyter, Berlin. Zbl0594.62017MR812467
- [22] VAN DER VAART A. W. (1998). Asymptotic Statistics. Cambridge University Press. Zbl0910.62001MR1652247
- [23] VAN DER VAART A. W. (2002). The statistical work of Lucien Le Cam. Ann. Statist. 30 631-682. Zbl1103.62301MR1922537
- [24] WALD A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Amer. Math. Soc. 54 426-482. Zbl0063.08120MR12401
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.