Algorithme EM : théorie et application au modèle mixte

Jean-Louis Foulley

Journal de la société française de statistique (2002)

  • Volume: 143, Issue: 3-4, page 57-109
  • ISSN: 1962-5197

How to cite

top

Foulley, Jean-Louis. "Algorithme EM : théorie et application au modèle mixte." Journal de la société française de statistique 143.3-4 (2002): 57-109. <http://eudml.org/doc/198539>.

@article{Foulley2002,
author = {Foulley, Jean-Louis},
journal = {Journal de la société française de statistique},
language = {fre},
number = {3-4},
pages = {57-109},
publisher = {Société française de statistique},
title = {Algorithme EM : théorie et application au modèle mixte},
url = {http://eudml.org/doc/198539},
volume = {143},
year = {2002},
}

TY - JOUR
AU - Foulley, Jean-Louis
TI - Algorithme EM : théorie et application au modèle mixte
JO - Journal de la société française de statistique
PY - 2002
PB - Société française de statistique
VL - 143
IS - 3-4
SP - 57
EP - 109
LA - fre
UR - http://eudml.org/doc/198539
ER -

References

top
  1. ANDERSON T.W. (1984), An introduction to multivariate analysis, J Wiley and Sons, New York. Zbl0651.62041MR771294
  2. ANDERSON D.A., AITKIN M. (1985), Variance components models with binary response : interviewer probability, Journal of the Royal Statistical Society B, 47, 203-210. MR816084
  3. AITKIN M. (1987), Modelling variance heterogeneity in normal regression using GLIM, Applied Statistics, 36, 332-339. 
  4. BOOTH J.G., HOBERT J.P. (1999), Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm, Journal of the Royal Statistical Society B, 61,265-285. Zbl0917.62058
  5. BOYLES R.A. (1983), On the convergence of the EM algorithm, Journal of the Royal Statistical Society B, 45, 47-50. Zbl0508.62030MR701075
  6. CELEUX G., DIEBOLT J. (1985), The SEM algorithm : a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem, Computational Statistics Quaterly, 2, 73-82. 
  7. CELEUX G., DIEBOLT J. (1992), A Stochastic Approximation Type EM Algorithm for the Mixture Problem, Stochastics and Stochastics Reports, 41, 119-134. Zbl0766.62050MR1275369
  8. CELEUX G., GOVAERT G. (1992), A classification algorithm for clustering and two stochastic versions. Computational Statistics and Data Analysis, 14, 315-322. Zbl0937.62605
  9. CELEUX G., CHAUVEAU D., DIEBOLT J. (1996), Some stochastic versions of the EM algorithm. Journal of Statistical Computation and Simulation, 55, 287-314. Zbl0907.62024
  10. DELMAS C., FOULLEY J.L., ROBERT-GRANIÉ C. (2002), Further insights into tests of variance components and model selection, Proceedings of the 7th World Congress of Genetics applied to Livestock Production, Montpellier, France, 19-23 August 2002. 
  11. DELYON B., LAVIELLE M., MOULINES E. (1999), Convergence of a stochastic approximation version of the EM algorithm, Annals of Statistics, 27, 94-128. Zbl0932.62094MR1701103
  12. DEMPSTER A., LAIRD N., RUBIN R. (1977), Maximum likelihood estimation from incomplete data via the EM algorithm, Journal of the Royal Statistical Society B, 39,1-38. Zbl0364.62022MR501537
  13. EFRON B. (1977), Discussion on maximum likelihood from incomplete data via the EM algorithm (by Dempster A., Laird N., Rubin R.), Journal of the Royal Statistical Society B, 39, 1-38. Zbl0364.62022MR501537
  14. FISHER R.A. (1925), Theory of statistical estimation, Proceedings of the Cambridge Philosophical Society, 22, 700-725. Zbl51.0385.01JFM51.0385.01
  15. FOULLEY J.L. (1993), A simple argument showing how to derive restricted maximum likelihood, Journal of Dairy Science, 76, 2320-2324. 
  16. FOULLEY J.L. (1997), ECM approaches to heteroskedastic mixed models with constant variance ratios. Genetics Selection Evolution, 29, 297-318. 
  17. FOULLEY J.L., IM S., GIANOLA D., HOESCHELE I. (1987), Empirical Bayes estimation of parameters for n polygenic binary traits, Genetics Selection Evolution, 19, 127-224. 
  18. FOULLEY J.L., SAN CRISTOBAL M., GIANOLA D., IM S. (1992), Marginal likelihood and Bayesian approaches to the analysis of heterogeneous residual variances in mixed linear Gaussian models, Computational Statistics and Data Analysis, 13, 291-305. Zbl0800.62386
  19. FOULLEY J.L., QUAAS R.L. (1995), Heterogeneous variances in Gaussian linear mixed models, Genetics Selection Evolution, 27, 211-228. 
  20. FOULLEY J.L., QUAAS R.L., THAON d'ARNOLDI C. (1998), A link function approach to heterogeneous variance components, Genetics Selection Evolution, 30, 27-43. 
  21. FOULLEY J.L., van DYK D.A. (2000), The PX EM algorithm for fast fitting of Henderson's mixed model, Genetics Selection Evolution, 32, 143-163. 
  22. FOULLEY J.L., JAFFREZIC F., ROBERT-GRANIÉ C. (2000), EM-REML estimation of covariance parameters in Gaussian mixed models for longitudinal data analysis, Genetics Selection Evolution, 32, 129-141. 
  23. FOULLEY J.L., DELMAS C., ROBERT-GRANIÉ C. (2002), Méthodes du maximum de vraisemblance en modèle linéaire mixte, Journal de la Société Française de Statistique, 143, 1-2, 5-52. 
  24. GRIMAUD A., HUET S., MONOD H., JENCZEWSKI E., EBER F. (2002), Mélange de modèles mixtes : application à l'analyse des appariements de chromosomes chez des haploïdes de colza, Journal de la Société Française de Statistique, 143, 1-2, 147-153. 
  25. HARTLEY H.O., RAO J.N.K. (1967), Maximum likelihood estimation for the mixed analysis of variance model, Biometrika, 54, 93-108. Zbl0178.22001MR216684
  26. HARVILLE D.A. (1974), Bayesian inference for variance components using only error contrasts, Biometrika, 61, 383-385. Zbl0281.62072MR368279
  27. HARVILLE D.A. (1977), Maximum likelihood approaches to variance component estimation and to related problems, Journal of the American Statistical Association, 72, 320-340. Zbl0373.62040MR451550
  28. HENDERSON C.R. (1973), Sire evaluation and genetic trends, In : Proceedings of the animal breeding and genetics symposium in honor of Dr J Lush. American Society Animal Science-American Dairy Science Association, 10-41, Champaign, IL. 
  29. HENDERSON C.R. (1984), Applications of linear models in animal breeding, University of Guelph, Guelph, 1984. 
  30. KUHN E., LAVIELLE M. (2002), Coupling a stochastic approximation version of EM with a MCMC procedure, Rapport technique, Université Paris Sud, 15 pages. Zbl1155.62420
  31. LAIRD N.M. (1982), The computation of estimates of variance components using the EM algorithm, Journal of Statistical Computation and Simulation, 14, 295-303. Zbl0478.65084MR662765
  32. LAIRD N.M., WARE J.H. (1982), Random effects models for longitudinal data, Biometrics, 38 963-974. Zbl0512.62107
  33. LAIRD N.M., LANGE N., STRAM D. (1987), Maximum likelihood computations with repeated measures : Application of the EM algorithm. Journal of the American Statistical Association, 82, 97-105. Zbl0613.62063MR883338
  34. LANGE K. (1995), A gradient algorithm locally equivalent to the EM algorithm, Journal of the Royal Statistical Society B, 57, 425-437. Zbl0813.62021MR1323348
  35. LEONARD T. (1975), A Bayesian approach to the linear model with unequal variances, Technometrics, 17, 95-102. Zbl0295.62036MR365866
  36. LEONARD T., HSU JSJ. (1999), Bayesian methods, an analysis for statisticians and interdisciplinary researchers, Cambridge University Press, Cambridge, UK. Zbl0983.62012MR1693571
  37. LIANG K.Y., ZEGER S.L. (1986), Longitudinal data analysis using generalized linear models, Biometrika, 73, 13-22. Zbl0595.62110MR836430
  38. LIAO J.G., LIPSITZ S.R. (2002) A type of restricted maximum likelihood estimator of variance components in generalized linear mixed models, Biometrika, 89, 401-409. Zbl1019.62072MR1913967
  39. LINDLEY D.V., SMITH A.F.M. (1972), Bayes Estimates for the Linear Model, Journal of the Royal Statistical Society B, 34, 1-41. Zbl0246.62050MR415861
  40. LINDSTRÖM M.J., BATES D.M. (1988), Newton-Raphson and EM algorithms for linear mixed effects models for repeated measures data, Journal of the American Statistical Association, 83, 1014-1022. Zbl0671.65119MR997577
  41. LIU C., RUBIN D.B. (1994), The ECME algorithm : a simple extension of the EM and ECM with faster monotone convergence, Biometrika, 81, 633-648. Zbl0812.62028MR1326414
  42. LIU C., RUBIN D.B., WU Y.N. (1998), Parameter expansion to accelerate EM : the PX-EM algorithm, Biometrika, 85, 755-770. Zbl0921.62071MR1666758
  43. LIU J.S., WU Y.N. (1999), Parameter expansion scheme for data augmentation, Journal of the American Statistical Association, 94, 1264-1274. Zbl1069.62514MR1731488
  44. LOUIS T.A. (1982), Finding the observed information matrix when using the EM algorithm, Journal of the Royal Statistical Society B, 44, 226-233. Zbl0488.62018MR676213
  45. MCLACHLAN G.J., BASHFORD K.E. (1988) Mixture models : inferences and applications to clustering, Marcel Dekker, New York. Zbl0697.62050MR926484
  46. MCLACHLAN G.J., KRISHNAN T. (1997), The EM algorithm and extensions, John Wiley & Sons, New York. Zbl0882.62012MR1417721
  47. MCLACHLAN G.J., PEEL D. (2000), Finite mixture models, John Wiley & Sons, New York. Zbl0963.62061MR1789474
  48. MENG X.L. (2000) Missing data : dial M for ? ? ?, Journal of the American Statistical Association, 95, 1325-1330. Zbl1180.62012MR1825287
  49. MENG X.L., RUBIN D.B. (1991), Using EM to obtain asymptotic variance-covariance matrices : the SEM algorithm, Journal of the American Statistical Association, 86, 899-909. 
  50. MENG X.L., RUBIN D.B. (1993), Maximum likelihood estimation via the ECM algorithm : a general framework, Biometrika, 80, 267-278. Zbl0778.62022MR1243503
  51. MENG X.L., van DYK D.A. (1997), The EM algorithm-an Old Folk-song Sung to a Fast New Tune, Journal of the Royal Statistical Society B 59, 511-567. Zbl1090.62518MR1452025
  52. MENG X.L., van DYK D.A. (1998), Fast EM-type implementations for mixed effects models, Journal of the Royal Statistical Society B 60, 559-578. Zbl0909.62073MR1625942
  53. NAIR V.N., PREGIBON D. (1988), Analyzing dispersion effects from replicated factorial experiments, Technometrics, 30, 247-257. Zbl0655.62097MR959528
  54. NICOLAS P., BIZE L., MURI F., HOEBEKE M., RODOLPHE F., EHRLICH S., PRUM B., BESSIÈRES P. (2002), Mining bacillus subtilis chromosome heterogeneities using hidden Markov models, Nucleic Acid Research, 30, 1418-1426. 
  55. NIELSEN S.F. (2000), The stochastic EM algorithm : estimation and asymptotic results, Bernoulli, 6, 457-489. Zbl0981.62022MR1762556
  56. PATTERSON H.D., THOMPSON R. (1971), Recovery of inter-block information when block sizes are unequal, Biometrika, 58, 545-554. Zbl0228.62046MR319325
  57. RAO C.R. (1973), Linear Statistical Inference and its Applications, 2nd édition. Wiley, New-York. Zbl0137.36203MR346957
  58. RAO C.R., KLEFFE J. (1988), Estimation of variance components and applications, North Holland series in statistics and probability, Elsevier, Amsterdam. Zbl0645.62073MR933559
  59. ROBERT-GRANIÉ C., DUCROCQ V., FOULLEY J.L. (1997), Heterogeneity of variance for type traits in the Montbéliarde cattle. Genetics Selection Evolution, 29, 545-570. 
  60. ROBERT-GRANIÉ C., BONAITI B., BOICHARD D., BARBAT A. (1999), Accounting for variance heterogeneity in French dairy cattle genetic evaluation, Livestock Production Science, 60, 343-357. 
  61. ROBERT-GRANIÉ C., HEUDE B., FOULLEY J.L. (2002), Modelling the growth curve of Maine Anjou beef cattle using heteroskedastic random regression models. Genetics Selection Evolution, 34, 423-445. 
  62. ROBERT C.P. (1996), Mixtures of distributions : inference and estimation, In Markov Chain Monte Carlo in Practice (Gilks W.R., Ricardson S., Spiegelhalter D.J., editors), Chapman & Hall, London, 441-464. Zbl0849.62013MR1397974
  63. ROBERT C.P., CASELLA G. (1999), Monte Carlo Statistical Methods, Springer, Berlin. Zbl0935.62005MR1707311
  64. SAN CRISTOBAL M., ROBERT-GRANIÉ C., FOULLEY J.L. (2002), Hétéroscédasticité et modèles linéaires mixtes : théorie et applications en génétique quantitative, Journal de la Société Française de Statistiques, 143, 155-165. 
  65. SEARLE S.R. (1992), Matrix algebra useful for statistics, J. Wiley and Sons, New-York. Zbl0555.62002MR670947
  66. SEARLE S.R., CASELLA G., MC CULLOCH C.E. (1992), Variance components, J. Wiley and Sons, New-York. Zbl1108.62064MR1190470
  67. SMITH S.P., GRASER H.U. (1986), Estimating variance components in a class of mixed models by restricted maximum likelihood, Journal of Dairy Science, 69, 1156-1165. 
  68. TANNER M.A. (1996), Tools for Statistical Inference : Methods for the Exploration of Posterior Distributions and Likelihood Functions, Springer, New York. Zbl0777.62003MR1396311
  69. TANNER M.A., WONG W.H. (1987), The calculation of posterior distributions by Data Augmentation (with discussion), Journal of the American Statistical Association, 82, 528-550. Zbl0619.62029MR898357
  70. TITTERINGTON D.M. (1984), Recursive parameter estimation using incomplete data, Journal of the Royal Statistical Society B, 46, 257-267. Zbl0556.62061MR781884
  71. TITTERINGTON D.M., SMITH A.F.M., MAKOV U.E. (1985), Statistical Analysis of Finite Mixture, John Wiley & Sons, New York. Zbl0646.62013MR838090
  72. THOMPSON R. (2002), A review of genetic parameter estimation, Proceedings of the 7 th World Congress of Genetics applied to Livestock Production, Montpellier, France, 19-23 August 2002. 
  73. van DYK D.A. (2000), Fitting mixed-effects models using efficient EM-type algorithms, Journal of Computational and Graphical Statistics, 9, 78-98. MR1826277
  74. van DYK D.A, MENG X.L. (2001), The art of data augmentation, Journal of Computational and Graphical Statistics 10, 1-50. MR1936358
  75. WEI G.C.G., TANNER M.A. (1990), A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms, Journal of the American Statistical Association, 85, 699-704. 
  76. WEIR B.S. (1996), Genetic data analysis II, Sinauer associates, Sunderland, Massachussets. 
  77. WOLFINGER R.D., TOBIAS R.D. (1998), Joint estimation of location, dispersion, and random effects in robust design, Technometrics, 40, 62-71. Zbl0896.62082
  78. WU C.F.J. (1983), On the convergence properties of the EM algorithm. Annals of Statistics, 11, 95-103. Zbl0517.62035MR684867
  79. WU R., MA C-X., LITTLE R.C., CASELLA G. (2002), A statistical model for the genetic origin of allometric scaling laws in biology, Journal of Theoretical Biology, 219, 121-135. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.