Volatility model risk measurement and against worst case volatilities

Risklab project in model risk

Journal de la société française de statistique (2000)

  • Volume: 141, Issue: 1-2, page 73-86
  • ISSN: 1962-5197

How to cite

top

Risklab project in model risk. "Volatility model risk measurement and against worst case volatilities." Journal de la société française de statistique 141.1-2 (2000): 73-86. <http://eudml.org/doc/198540>.

@article{Risklabprojectinmodelrisk2000,
author = {Risklab project in model risk},
journal = {Journal de la société française de statistique},
language = {eng},
number = {1-2},
pages = {73-86},
publisher = {Société française de statistique},
title = {Volatility model risk measurement and against worst case volatilities},
url = {http://eudml.org/doc/198540},
volume = {141},
year = {2000},
}

TY - JOUR
AU - Risklab project in model risk
TI - Volatility model risk measurement and against worst case volatilities
JO - Journal de la société française de statistique
PY - 2000
PB - Société française de statistique
VL - 141
IS - 1-2
SP - 73
EP - 86
LA - eng
UR - http://eudml.org/doc/198540
ER -

References

top
  1. [1] Framework for supervisory information about derivatives activities of banks and securities firms. Basle commitee on banking supervision, manuscript, Bank for Internai Settlements, 1995. 
  2. [2] Principles for the management of interest rate risk. Basle commitee on banking supervision, manuscript, Bank for Internal Settlements, 1997. 
  3. [3] Y. AIT-SAHALIA. [ 1996] Testing continuous-time models of the spot interest rate. Review of Financial Studies, 9 :385-426. 
  4. [4] A. AKGUN. [ 2000] Model risk with jump diffusion processes. working paper, university of Lausanne. 
  5. [5] P. ARTZNER, F. DELBAEN, J.-M. EBER, and D. HEATH. [ 1999] Coherent measures of risk. Math. Finance, 9(3) :203-228. Zbl0980.91042MR1850791
  6. [6] R. AZENCOTT. [ 1980] Formule de Taylor stochastique et développement asymptotique d'intégrales de Feynmann. In Séminaire de Probabilités XVI, Supplément Géométrie Différentielle Stochastique, Lect. Notes in Math., 237-285. Springer. Zbl0484.60064MR658728
  7. [7] V. BALLY and D. TALAY. [ 1996] The law of the Euler scheme for stochastic differential equations (I) : convergence rate of the distribution function. Probability Theory and Related Fields, 104(1). Zbl0838.60051MR1367666
  8. [8] F. BLACK and M. SCHOLES. [ 1973] The pricing of Options and Corporate Liabilities. Journal of Political Economy, 81 :635-654. Zbl1092.91524
  9. [9] M. BOSSY, R. GIBSON, F-S. LHABITANT, N. PISTRE, and D. TALAY. [ 1999] Model risk analysis for bond options in a Heath-Jarrow-Morton framework. Submitted for publication. 
  10. [10] J.C. COX, J.E. INGERSOLL, and S.A. ROSS. [ 1985] A theory of the term structure of interest rates. Econometrica, 53 :385-407. Zbl1274.91447MR785475
  11. [11] J. CVITANIC and I. KARATZAS. [ 1999] On dynamic measures of risk. Finance & Stochastics, 3(4) :451-482. Zbl0982.91030MR1842283
  12. [12] W.H. FLEMING and P.E. SOUGANIDIS. [ 1989] On the existence of value fonctions of two-player, zero-sum stochastic differential games. Indian Univ. Math. J., 38(2). Zbl0686.90049MR997385
  13. [13] E. FOURNIE and D. TALAY. [ 1991] Application de la statistique des diffusions à un modèle de taux d'intérêt. Finance, 12(2) :79-111. 
  14. [14] R. GIBSON, FS. LHABITANT, N. PISTRE and D. TALAY. [ 1998] Interest rate model risk. Risk books. 
  15. [15] C. GREEN and S. FIGLEWSKI. [ 1999] Market risk and model risk for financial institutions writing options. 
  16. [16] D. HEATH, R.A. JARROW and A. MORTON. [ 1992] Bond pricing and the term structure of interest rates : A new methodology for contingent claims valuation. Econometrica, 60 :77-105. Zbl0751.90009
  17. [17] J. HULL and A. WHITE. [ 1990] Pricing interest rate derivative securities. Review of Financial Studies, 3 :573-592. 
  18. [18] E. JACQUIER and R. JARROW. [ 1996] Model error in contingent claim models dynamic evaluation. Cirano Working Paper 96s-12. 
  19. [19] S. KUSUOKA and D. STROOCK. [ 1987] Applications of the Malliavin Calculus, part III. J. Fac. Sci. Univ. Tokyo, 34 :391-442. Zbl0633.60078MR914028
  20. [20] J. LOPEZ. [ 1996-51] Regulatory evaluation of value-at- risk models. Working paper, the Wharton Scopl, University of Pennsylvania. 
  21. [21] R.C. MERTON. [ 1973] Theory of rational option pricing. Bell J. of Econom. and Management Sci., 4 :141-183. Zbl1257.91043MR496534
  22. [22] M. PRITZKER. Evaluating value-at - risk methodologies : Accuracy versus computational time. Working Paper, The Wharton School, University of Pennsylvania. 
  23. [23] D. TALAY and Z. ZHENG. [ 2000] Model risk management against worst case volatility processes for discount bound option. Submitted for publication. 
  24. [24] D. TALAY and Z. ZHENG. [ 2000] Quantiles of the Euler scheme for diffusion processes and applications. Submitted for publication. Zbl1060.91074
  25. [25] O. VASICEK. [ 1977] An equilibrium characterization of the term structure. Journal of Financial Economics, 5 :177-188. MR451451

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.